Import library
import numpy as np
from sklearn import preprocessing as pp
input_data = np.array([[2.1, -1.9, 5.5],
[-1.5, 2.4, 3.5],
[0.5, -7.9, 5.6],
[5.9, 2.3, -5.8]])
Binarization
data_bin = pp.Binarizer(threshold=0.5).transform(input_data)
#array([[1., 0., 1.] ,
[0., 1., 1.],
[0., 0., 1.],
[1., 1., 0.]])
Average value
input_data.mean(0) # array([ 1.75, -1.275 , 2.2 ])
input_data.std(0) # array([2.71431391, 4.20022321, 4.69414529])< /span>
data_scale = pp.scale(input_data)
data_scale.mean(0) # array([1.11022302e-16 , 0.00000000e+00, 0.00000000e+00])
data_scale.std(0) # array([1., 1., 1. ])
Zoom
data_minmax = pp.MinMaxScaler(feature_range=(0, 1)).fit_transform(input_data)
#array([[0.48648649, 0.58252427, 0.99122807], span>
[0., 1., 0.81578947],
[0.27027027, 0., 1. ],
[1., 0.99029126, 0. ]])
Normalize
#L1 standardization, the sum of absolute values is always in each row Up to 1
data_L1 = pp.normalize(input_data, 'l1')
#array([[ 0.22105263, -0.2, 0.57894737],< /span>
[-0.2027027, 0.32432432, 0.47297297],
[0.03571429, -0.56428571, 0.4 ],
[0.42142857, 0.16428571, -0.41428571]])
#L2 standardization, the sum of squares in each line is always at most 1
data_L2 = pp.normalize(input_data, 'l2')
#array([[ 0.33946114, -0.30713151, 0.88906489],< /span>
[-0.33325106, 0.53320169, 0.7775858 ],
[0.05156558, -0.81473612, 0.57753446],
[0.68706914, 0.26784051, -0.6754239 ]])
Tag data
input_labels = ['red','black','red< span style="color: #800000;">','green','black< /span>',' yellow','white']
test_labels = list(set(input_labels))
#Create and train tag encoder objects
encoder = pp.LabelEncoder()
#label==>data
values = encoder.transform(test_labels)
#array([1, 4, 3, 2, 0] , dtype=int64)
#data==>label
test = np.array([1, 3, 4])
labels = encoder.inverse_transform(test)
#array(['green','white','yellow '], dtype='
Import library
import numpy as np
from sklearn import preprocessing as pp
input_data = np.array([[2.1, -1.9, 5.5],
[-1.5, 2.4, 3.5],
[0.5, -7.9, 5.6],
[5.9, 2.3, -5.8]])
Binarization
data_bin = pp.Binarizer(threshold=0.5).transform(input_data)
#array([[1., 0., 1.] ,
[0., 1., 1.],
[0., 0., 1.],
[1., 1., 0.]])
Average value
input_data.mean(0) # array([ 1.75, -1.275 , 2.2 ])
input_data.std(0) # array([2.71431391, 4.20022321, 4.69414529])< /span>
data_scale = pp.scale(input_data)
data_scale.mean(0) # array([1.11022302e-16 , 0.00000000e+00, 0.00000000e+00])
data_scale.std(0) # array([1., 1., 1. ])
Zoom
data_minmax = pp.MinMaxScaler(feature_range=(0, 1)).fit_transform(input_data)
#array([[0.48648649, 0.58252427, 0.99122807], span>
[0., 1., 0.81578947],
[0.27027027, 0., 1. ],
[1., 0.99029126, 0. ]])
Normalize
#L1 standardization, the sum of absolute values is always in each row Up to 1
data_L1 = pp.normalize(input_data, 'l1')
#array([[ 0.22105263, -0.2, 0.57894737],< /span>
[-0.2027027, 0.32432432, 0.47297297],
[0.03571429, -0.56428571, 0.4 ],
[0.42142857, 0.16428571, -0.41428571]])
#L2 standardization, the sum of squares in each line is always at most 1
data_L2 = pp.normalize(input_data, 'l2')
#array([[ 0.33946114, -0.30713151, 0.88906489],< /span>
[-0.33325106, 0.53320169, 0.7775858 ],
[0.05156558, -0.81473612, 0.57753446],
[0.68706914, 0.26784051, -0.6754239 ]])
Tag data
input_labels = ['red','black','red< span style="color: #800000;">','green','black< /span>',' yellow','white']
test_labels = list(set(input_labels))
#Create and train tag encoder objects
encoder = pp.LabelEncoder()
#label==>data
values = encoder.transform(test_labels)
#array([1, 4, 3, 2, 0] , dtype=int64)
#data==>label
test = np.array([1, 3, 4])
labels = encoder.inverse_transform(test)
#array(['green','white','yellow '], dtype='