Algorithm – The minimum spheres of the triangle in 3D?

First, I think you add the vertex and the scale by 1/3 to find the origin and then the maximum distance from the vertex to the origin. This will produce a sphere containing triangles, but it doesn’t necessarily Is the smallest.

Is there a known way to determine the smallest sphere to completely encapsulate any triangle in 3D?

Assuming that the sphere is just a trivial extension from a circle (2-D) to 3-D (using Same center point and same radius), I believe what you are looking for is circumscribed circle of a triangle.

Obviously I did not consider the obtuse triangle, if you have a triangle on the circle Vertex (point), then the circle is not the smallest bounding circle (hence the smallest bounding sphere).

Now I believe you are looking for the minimum bounding sphere, which is a known and researched problem in mathematics, And computer graphics. “Smallest Enclosing Circle Problem” is a description of O(n ^ {2}) and linear O(n) algorithms.

As far as I know, the smallest bounding circle does produce the smallest bounding sphere, Use the same parameters (center point and radius) for projection to three dimensions.

First, I think you add the vertex and the scale by 1/3 to find the origin and then go from the vertex to The maximum distance to the origin. This produces a sphere containing a triangle, but it is not necessarily the smallest.

Is there a known way to determine the smallest sphere to completely encapsulate the 3D Arbitrary triangle?

Assuming that the sphere is just a trivial extension of a circle (2-D) to 3-D (using the same center point and the same radius), I believe What you are looking for is circumscribed circle of a triangle.

Obviously I did not consider the obtuse triangle. If you have triangle vertices (points) on the circle, then the circle is not the smallest bounding circle (Hence the smallest bounding sphere).

Now I believe you are looking for the minimum bounding sphere, which is a known and studied problem in mathematics, and computer graphics. “Smallest Enclosing Circle Problem” is O (n ^ (2)) and a description of the linear O(n) algorithm.

As far as I know, the smallest bounding circle does produce the smallest bounding sphere, using the same parameters projected to three dimensions (center point and radius ).

WordPress database error: [Table 'yf99682.wp_s6mz6tyggq_comments' doesn't exist]
SELECT SQL_CALC_FOUND_ROWS wp_s6mz6tyggq_comments.comment_ID FROM wp_s6mz6tyggq_comments WHERE ( comment_approved = '1' ) AND comment_post_ID = 2823 ORDER BY wp_s6mz6tyggq_comments.comment_date_gmt ASC, wp_s6mz6tyggq_comments.comment_ID ASC

Leave a Comment

Your email address will not be published.