BloomFilter

BloomFilter can be used to quickly determine duplicate values from big data, such as common user statistics, you can quickly query whether the user ID has been counted from BloomFilter, if there is no statistics, add it to BloomFilter, and the statistics will not be repeated next time , In this way, the sole statistical purpose is achieved.

The following is the BloomFilter class, the main method demonstrates how to use BloomFilter.


import java.nio.charset.Charset;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.util.BitSet;
import java.util.Collection;



public class BloomFilter<E> implements java.io.Serializable{
	
	private static final long serialVersionUID = -722177131407656097L;
	
	private BitSet bitset;
    private int bitSetSize;
    private double bitsPerElement;
    private int expectedNumberOfFilterElements; // expected (maximum) number of elements to be added
    private int numberOfAddedElements; // number of elements actually added to the Bloom filter
    private int k; // number of hash functions

    static final Charset charset = Charset.forName("UTF-8"); // encoding used for storing hash values as strings

    static final String hashName = "MD5"; // MD5 gives good enough accuracy in most circumstances. Change to SHA1 if it's needed
    static final MessageDigest digestFunction;
    static { // The digest method is reused between instances
        MessageDigest tmp;
        try {
            tmp = java.security.MessageDigest.getInstance(hashName);
        } catch (NoSuchAlgorithmException e) {
            tmp = null;
        }
        digestFunction = tmp;
    }

    /**
      * Constructs an empty Bloom filter. The total length of the Bloom filter will be
      * c*n.
      *
      * @param c is the number of bits used per element.
      * @param n is the expected number of elements the filter will contain.
      * @param k is the number of hash functions used.
      */
    public BloomFilter(double c, int n, int k) {
      this.expectedNumberOfFilterElements = n;
      this.k = k;
      this.bitsPerElement = c;
      this.bitSetSize = (int)Math.ceil(c * n);
      numberOfAddedElements = 0;
      this.bitset = new BitSet(bitSetSize);
    }

    /**
     * Constructs an empty Bloom filter. The optimal number of hash functions (k) is estimated from the total size of the Bloom
     * and the number of expected elements.
     *
     * @param bitSetSize defines how many bits should be used in total for the filter.
     * @param expectedNumberOElements defines the maximum number of elements the filter is expected to contain.
     */
    public BloomFilter(int bitSetSize, int expectedNumberOElements) {
        this(bitSetSize / (double)expectedNumberOElements,
             expectedNumberOElements,
             (int) Math.round((bitSetSize / (double)expectedNumberOElements) * Math.log(2.0)));
    }

    /**
     * Constructs an empty Bloom filter with a given false positive probability. The number of bits per
     * element and the number of hash functions is estimated
     * to match the false positive probability.
     *
     * @param falsePositiveProbability is the desired false positive probability.
     * @param expectedNumberOfElements is the expected number of elements in the Bloom filter.
     */
    public BloomFilter(double falsePositiveProbability, int expectedNumberOfElements) {
        this(Math.ceil(-(Math.log(falsePositiveProbability) / Math.log(2))) / Math.log(2), // c = k / ln(2)
             expectedNumberOfElements,
             (int)Math.ceil(-(Math.log(falsePositiveProbability) / Math.log(2)))); // k = ceil(-log_2(false prob.))
    }

    /**
     * Construct a new Bloom filter based on existing Bloom filter data.
     *
     * @param bitSetSize defines how many bits should be used for the filter.
     * @param expectedNumberOfFilterElements defines the maximum number of elements the filter is expected to contain.
     * @param actualNumberOfFilterElements specifies how many elements have been inserted into the <code>filterData</code> BitSet.
     * @param filterData a BitSet representing an existing Bloom filter.
     */
    public BloomFilter(int bitSetSize, int expectedNumberOfFilterElements, int actualNumberOfFilterElements, BitSet filterData) {
        this(bitSetSize, expectedNumberOfFilterElements);
        this.bitset = filterData;
        this.numberOfAddedElements = actualNumberOfFilterElements;
    }

    /**
     * Generates a digest based on the contents of a String.
     *
     * @param val specifies the input data.
     * @param charset specifies the encoding of the input data.
     * @return digest as long.
     */
    public static int createHash(String val, Charset charset) {
        return createHash(val.getBytes(charset));
    }

    /**
     * Generates a digest based on the contents of a String.
     *
     * @param val specifies the input data. The encoding is expected to be UTF-8.
     * @return digest as long.
     */
    public static int createHash(String val) {
        return createHash(val, charset);
    }

    /**
     * Generates a digest based on the contents of an array of bytes.
     *
     * @param data specifies input data.
     * @return digest as long.
     */
    public static int createHash(byte[] data) {
        return createHashes(data, 1)[0];
    }

    /**
     * Generates digests based on the contents of an array of bytes and splits the result into 4-byte int's and store them in an array. The
     * digest function is called until the required number of int's are produced. For each call to digest a salt
     * is prepended to the data. The salt is increased by 1 for each call.
     *
     * @param data specifies input data.
     * @param hashes number of hashes/int's to produce.
     * @return array of int-sized hashes
     */
    public static int[] createHashes(byte[] data, int hashes) {
        int[] result = new int[hashes];

        int k = 0;
        byte salt = 0;
        while (k < hashes) {
            byte[] digest;
            synchronized (digestFunction) {
                digestFunction.update(salt);
                salt++;
                digest = digestFunction.digest(data);                
            }
        
            for (int i = 0; i < digest.length/4 && k < hashes; i++) {
                int h = 0;
                for (int j = (i*4); j < (i*4)+4; j++) {
                    h <<= 8;
                    h |= ((int) digest[j]) & 0xFF;
                }
                result[k] = h;
                k++;
            }
        }
        return result;
    }

    /**
     * Compares the contents of two instances to see if they are equal.
     *
     * @param obj is the object to compare to.
     * @return True if the contents of the objects are equal.
     */
    @Override
    public boolean equals(Object obj) {
        if (obj == null) {
            return false;
        }
        if (getClass() != obj.getClass()) {
            return false;
        }
        final BloomFilter<E> other = (BloomFilter<E>) obj;        
        if (this.expectedNumberOfFilterElements != other.expectedNumberOfFilterElements) {
            return false;
        }
        if (this.k != other.k) {
            return false;
        }
        if (this.bitSetSize != other.bitSetSize) {
            return false;
        }
        if (this.bitset != other.bitset && (this.bitset == null || !this.bitset.equals(other.bitset))) {
            return false;
        }
        return true;
    }

    /**
     * Calculates a hash code for this class.
     * @return hash code representing the contents of an instance of this class.
     */
    @Override
    public int hashCode() {
        int hash = 7;
        hash = 61 * hash + (this.bitset != null ? this.bitset.hashCode() : 0);
        hash = 61 * hash + this.expectedNumberOfFilterElements;
        hash = 61 * hash + this.bitSetSize;
        hash = 61 * hash + this.k;
        return hash;
    }


    /**
     * Calculates the expected probability of false positives based on
     * the number of expected filter elements and the size of the Bloom filter.
     * <br /><br />
     * The value returned by this method is the <i>expected</i> rate of false
     * positives, assuming the number of inserted elements equals the number of
     * expected elements. If the number of elements in the Bloom filter is less
     * than the expected value, the true probability of false positives will be lower.
     *
     * @return expected probability of false positives.
     */
    public double expectedFalsePositiveProbability() {
        return getFalsePositiveProbability(expectedNumberOfFilterElements);
    }

    /**
     * Calculate the probability of a false positive given the specified
     * number of inserted elements.
     *
     * @param numberOfElements number of inserted elements.
     * @return probability of a false positive.
     */
    public double getFalsePositiveProbability(double numberOfElements) {
        // (1 - e^(-k * n / m)) ^ k
        return Math.pow((1 - Math.exp(-k * (double) numberOfElements
                        / (double) bitSetSize)), k);

    }

    /**
     * Get the current probability of a false positive. The probability is calculated from
     * the size of the Bloom filter and the current number of elements added to it.
     *
     * @return probability of false positives.
     */
    public double getFalsePositiveProbability() {
        return getFalsePositiveProbability(numberOfAddedElements);
    }


    /**
     * Returns the value chosen for K.<br />
     * <br />
     * K is the optimal number of hash functions based on the size
     * of the Bloom filter and the expected number of inserted elements.
     *
     * @return optimal k.
     */
    public int getK() {
        return k;
    }

    /**
     * Sets all bits to false in the Bloom filter.
     */
    public void clear() {
        bitset.clear();
        numberOfAddedElements = 0;
    }

    /**
     * Adds an object to the Bloom filter. The output from the object's
     * toString() method is used as input to the hash functions.
     *
     * @param element is an element to register in the Bloom filter.
     */
    public void add(E element) {
       add(element.toString().getBytes(charset));
    }

    /**
     * Adds an array of bytes to the Bloom filter.
     *
     * @param bytes array of bytes to add to the Bloom filter.
     */
    public void add(byte[] bytes) {
       int[] hashes = createHashes(bytes, k);
       for (int hash : hashes)
           bitset.set(Math.abs(hash % bitSetSize), true);
       numberOfAddedElements ++;
    }

    /**
     * Adds all elements from a Collection to the Bloom filter.
     * @param c Collection of elements.
     */
    public void addAll(Collection<? extends E> c) {
        for (E element : c)
            add(element);
    }
        
    /**
     * Returns true if the element could have been inserted into the Bloom filter.
     * Use getFalsePositiveProbability() to calculate the probability of this
     * being correct.
     *
     * @param element element to check.
     * @return true if the element could have been inserted into the Bloom filter.
     */
    public boolean contains(E element) {
        return contains(element.toString().getBytes(charset));
    }

    /**
     * Returns true if the array of bytes could have been inserted into the Bloom filter.
     * Use getFalsePositiveProbability() to calculate the probability of this
     * being correct.
     *
     * @param bytes array of bytes to check.
     * @return true if the array could have been inserted into the Bloom filter.
     */
    public boolean contains(byte[] bytes) {
        int[] hashes = createHashes(bytes, k);
        for (int hash : hashes) {
            if (!bitset.get(Math.abs(hash % bitSetSize))) {
                return false;
            }
        }
        return true;
    }

    /**
     * Returns true if all the elements of a Collection could have been inserted
     * into the Bloom filter. Use getFalsePositiveProbability() to calculate the
     * probability of this being correct.
     * @param c elements to check.
     * @return true if all the elements in c could have been inserted into the Bloom filter.
     */
    public boolean containsAll(Collection<? extends E> c) {
        for (E element : c)
            if (!contains(element))
                return false;
        return true;
    }

    /**
     * Read a single bit from the Bloom filter.
     * @param bit the bit to read.
     * @return true if the bit is set, false if it is not.
     */
    public boolean getBit(int bit) {
        return bitset.get(bit);
    }

    /**
     * Set a single bit in the Bloom filter.
     * @param bit is the bit to set.
     * @param value If true, the bit is set. If false, the bit is cleared.
     */
    public void setBit(int bit, boolean value) {
        bitset.set(bit, value);
    }

    /**
     * Return the bit set used to store the Bloom filter.
     * @return bit set representing the Bloom filter.
     */
    public BitSet getBitSet() {
        return bitset;
    }

    /**
     * Returns the number of bits in the Bloom filter. Use count() to retrieve
     * the number of inserted elements.
     *
     * @return the size of the bitset used by the Bloom filter.
     */
    public int size() {
        return this.bitSetSize;
    }

    /**
     * Returns the number of elements added to the Bloom filter after it
     * was constructed or after clear() was called.
     *
     * @return number of elements added to the Bloom filter.
     */
    public int count() {
        return this.numberOfAddedElements;
    }

    /**
     * Returns the expected number of elements to be inserted into the filter.
     * This value is the same value as the one passed to the constructor.
     *
     * @return expected number of elements.
     */
    public int getExpectedNumberOfElements() {
        return expectedNumberOfFilterElements;
    }

    /**
     * Get expected number of bits per element when the Bloom filter is full. This value is set by the constructor
     * when the Bloom filter is created. See also getBitsPerElement().
     *
     * @return expected number of bits per element.
     */
    public double getExpectedBitsPerElement() {
        return this.bitsPerElement;
    }

    /**
     * Get actual number of bits per element based on the number of elements that have currently been inserted and the length
     * of the Bloom filter. See also getExpectedBitsPerElement().
     *
     * @return number of bits per element.
     */
    public double getBitsPerElement() {
        return this.bitSetSize / (double)numberOfAddedElements;
    }
    
    public static void main(String[] args) {
		BloomFilter bf = new BloomFilter(0.0001,20000000);
		String[] checks = new String[100000];
		int pos = 0;
		for (int i = 0; i < 10000000; i++) {
			String str = StringUtil.random(null, 64);
			bf.add(str);
			if (i == 1000000 - 1) {
				System.out.println("add finish.");
			}
			if(i%100==0) {
				checks[pos] = str;
				pos++;
			}
		}

		int contains = 0;
		int uncontains = 0;
		for (String str : checks) {
			//str = StringUtil.random(null, 19);
			if (bf.contains(str)) {
				contains++;
			} else {
				uncontains++;
			}
		}
		System.out.println("--contains:" + contains + "---uncontains:" + uncontains);
	}
}