Leeras implementation of Lenet-5 model

 1 import keras

2 from keras.models import Sequential

3 from keras.layers import Input,Dense,Activation,Conv2D,MaxPooling2D,Flatten

4 from keras.datasets import mnist

5

6

7 (x_train,y_train),(x_test,y_test) = mnist.load_data()

8 x_train = x_train.reshape(-1, 28, 28, 1) #######

9 x_train = x_train.astype("float32")

10 print(x_train.shape)

11 y_train = y_train.astype("float32")

12 x_test = x_test.reshape(-1,28,28,1)

13 x_test = x_test.astype("float32")

14 y_test = y_test.astype("float32")

15

16 print (y_train)

17 x_train /= 255

18 x_test /= 255

19

20 from keras.utils import np_utils

21 y_train_new = np_utils.to_categorical(num_classes=10,y=y_train )

22 print(y_train_new)

23 y_test_new = np_utils.to_categorical(num_classes=10,y=y_test )

24

25 def LeNet_5():

26 model = Sequential()

27 model.add(Conv2D(filters=6,kernel_size=(5,5),padding="valid",activation=< span style="color: #800000;">"tanh" ,input_shape=[28, 28, 1]))

28 model.add(MaxPooling2D(pool_size=(2,2) ))

29 model.add(Conv2D(filters=16,kernel_size=(5,5),padding="valid",activation=< span style="color: #800000;">"tanh" ))

30 model.add(MaxPooling2D(pool_size=(2,2) ))

31 model.add(Flatten())

32 model.add(Dense(120,activation=" span>tanh"))

33 model.add(Dense(84,activation=" span>tanh"))

34 model.add(Dense(10,activation=" span>softmax"))

35 return model

36

37 def train_model():

38 model = LeNet_5()

39 model.compile(optimizer="adam",loss=" span>categorical_crossentropy",metrics=["accuracy"])

40 model.fit(x_train,y_train_new,batch_size=64,epochs=1,verbose=1,validation_split=0.2,shuffle =True)

41 return model

42

43 model = train_model()

44

45 loss,accuracy = model.evaluate(x_test,y_test_new)

46 print(loss,accuracy)

 1 import< span style="color: #000000;"> keras

2 from keras.models import Sequential

3 from keras.layers import Input,Dense,Activation,Conv2D,MaxPooling2D,Flatten

4 from keras.datasets import mnist

5

6

7 (x_train,y_train),(x_test,y_test) = mnist.load_data()

8 x_train = x_train.reshape(-1, 28, 28, 1) #######

9 x_train = x_train.astype("float32")

10 print(x_train.shape)

11 y_train = y_train.astype("float32")

12 x_test = x_test.reshape(-1,28,28,1)

13 x_test = x_test.astype("float32")

14 y_test = y_test.astype("float32")

15

16 print (y_train)

17 x_train /= 255

18 x_test /= 255

19

20 from keras.utils import np_utils

21 y_train_new = np_utils.to_categorical(num_classes=10,y=y_train )

22 print(y_train_new)

23 y_test_new = np_utils.to_categorical(num_classes=10,y=y_test )

24

25 def LeNet_5():

26 model = Sequential()

27 model.add(Conv2D(filters=6,kernel_size=(5,5),padding="valid",activation=< span style="color: #800000;">"tanh" ,input_shape=[28, 28, 1]))

28 model.add(MaxPooling2D(pool_size=(2,2) ))

29 model.add(Conv2D(filters=16,kernel_size=(5,5),padding="valid",activation=< span style="color: #800000;">"tanh" ))

30 model.add(MaxPooling2D(pool_size=(2,2) ))

31 model.add(Flatten())

32 model.add(Dense(120,activation=" span>tanh"))

33 model.add(Dense(84,activation=" span>tanh"))

34 model.add(Dense(10,activation=" span>softmax"))

35 return model

36

37 def train_model():

38 model = LeNet_5()

39 model.compile(optimizer="adam",loss=" span>categorical_crossentropy",metrics=["accuracy"])

40 model.fit(x_train,y_train_new,batch_size=64,epochs=1,verbose=1,validation_split=0.2,shuffle =True)

41 return model

42

43 model = train_model()

44

45 loss,accuracy = model.evaluate(x_test,y_test_new)

46 print(loss,accuracy)

WordPress database error: [Table 'yf99682.wp_s6mz6tyggq_comments' doesn't exist]
SELECT SQL_CALC_FOUND_ROWS wp_s6mz6tyggq_comments.comment_ID FROM wp_s6mz6tyggq_comments WHERE ( comment_approved = '1' ) AND comment_post_ID = 3968 ORDER BY wp_s6mz6tyggq_comments.comment_date_gmt ASC, wp_s6mz6tyggq_comments.comment_ID ASC

Leave a Comment

Your email address will not be published.