HBase table two data backup methods

Hbase table two data backup methods-import and export examples p>

This article will provide two backup methods——

1) Back up a table in hbase based on the class provided by Hbase

2) Fast backup method based on Hbase snapshot data

Scenario: Because the online and test environment are separated, it cannot To access the online library in the test environment, it is necessary to export a part of the online hbase table to the hbase table in the test environment. This is the origin of this article.

1. Back up a table in hbase based on the class provided by hbase

this articleuse the classes provided by hbaseExport the data of a table in hbase to hdfs, and then export to the test hbase table.

First introduce the relevant parameter options:

(1) Export from hbase table (# Export to hdfs when file:// is not written by default)

HBase data Export to HDFS or local file

hbase org.apache.hadoop.hbase.mapreduce.Export emp file:///Users/a6/Applications/experiment_data/hbase_data/bak
HBase data export to local file
hbase org.apache.hadoop.hbase.mapreduce.Export emp /hbase/emp_bak

(2) Import the hbase table (# Export when file:// is not written by default Go to hdfs)

Import the data on hdfs into the backup target table

localhost:bin a6$ hbase org.apache.hadoop.hbase.mapreduce.Driver import emp_bak /hbase/emp_bak/*
Import the data on the local file into the backup target table
hbase org.apache.hadoop.hbase.mapreduce.Driver import emp_bak file:///Users/a6/Applications/experiment_data/hbase_data/bak/*

(3) You can limit the size of scanner.batch when exporting.
If a large amount of data appears in a row in hbase, then a ScannerTimeoutException error will be reported when exporting. At this time, the parameter hbase.export.scaaner.batch needs to be set. In this way, errors in exporting can be avoided.

hbase org.apache.hadoop.hbase.mapreduce.Export -Dhbase.export.scanner.batch=2000 emp file:///Users/a6/Applications/experiment_data/hbase_data/bak 

(4) In order to save space, you can use the compress option

When exporting hbase data, if the compress option is not applicable, the size of the data may be The difference is 5 times. Therefore, using the compress option can save a lot of space when backing up data.

I also tested the export speed of the compress option, and there is little difference (almost no difference) from without this option:

hbase org.apache.hadoop.hbase.mapreduce.Export -Dhbase.export.scanner.batch=2000 -D mapred.output.compress=true emp file:///Users/a6/Applications/experiment_data/hbase_data/bak
By adding the compress option, the final export The size of the file has changed from 335 bytes to 325 bytes,

File Output Format Counters File Output Format Counters
Bytes Written=335 Bytes Written=323

(5)Export the specified row key range and column family

Before the company is preparing to replace the data center, the data in the hbase database needs to be migrated. AlthoughWhen migrating data from the hbase database, using its own tools import and export is very convenient. However, when migrating a large amount of data, it may take a long time to run and may even make mistakes. At this time, it is possible to reduce the running time of a single export tool by specifying the row key range and column family. It can be seen that there are several options supported. If we want to export the data of the table test, and as long as the column family Info, the row key range is between 000 and 001, we can write:

That’s it, and the data will be saved in hdfs.
By specifying the column family and row key range, you can export only part of the data to avoid export startup The mapreduce task takes too long to run. That is, the data can be exported multiple times.
./hbase org.apache.hadoop.hbase.mapreduce.Export -D hbase.mapreduce.scan.column.family=Info -D hbase.mapreduce.scan.row.start=000 -D hbase .mapreduce.scan.row.stop=001 test /test_datas

If you don’t talk about gossip, here is an example:

I found that the export/import mechanism that comes with HBase can implement the Backup Restore function. And can achieve incremental backup.
The principle is implemented using MapReduce.
1. Export exports data in units of tables. If you want to complete the backup of the entire database, you need to perform n times.
2. The calling method of Export in the shell is similar to the following format:
./hbase org.apache.hadoop.hbase.mapreduce.Export Table name backup path (version number) (start timestamp) (end time Stamp)
The options in parentheses are optional, such as
Usage: Export [-D ]* [ [ []] [^ [regex pattern] or [Prefix] to filter]]
hbase org.apache.hadoop.hbase.mapreduce.Export emp /hbase/emp_bak 1 123456789
Back up the emp table to the /hbase/emp_bak directory ( The last level directory must be created by Export itself), the version number is 1, the backup record starts from the time stamp of 123456789 to the current time all the records that have performed the put operation.
Note: Why are all put operation records? Because in the backup, all records in all tables with a timestamp greater than or equal to the value of 123456789 are scanned and exported. If it is a delete operation, the record in the table has been deleted, and the record information cannot be obtained during scanning.
When the timestamp is not specified, the data in the current complete table is backed up.

1), create hbase table emp

localhost:bin a6$ pwd

/Users/a6/Applications/hbase-1.2.6/bin
localhost:bin a6$ hbase shell
create'emp','personal data','professional data'

2), insert data and view data< /strong>

Insert the value of the first row into the emp table as shown below.

hbase(main):005:0> put ‘emp’,‘1’,‘personal data:name’,‘raju’
0 row(s) in 0.6600 seconds
hbase(main):006:0> put ‘emp’,‘1’,‘personal data:city’,‘hyderabad’
0 row(s) in 0.0410 seconds
hbase(main):007:0> put ‘emp’,‘1’,‘professional data:designation’,‘manager’
0 row(s) in 0.0240 seconds
hbase(main):007:0> put ‘emp’,‘1’,‘professional data:salary’,‘50000’
0 row(s) in 0.0240 seconds

After inserting the entire table, you will get the following output.
hbase(main):002:0> scan ‘emp’
ROW COLUMN+CELL
1 column=personal data:city, timestamp=1526269334560, value=hyderabad
1 column=personal data:name, timestamp=1526269326929, value=raju
1 column=professional data:designation, timestamp=1526269345044, value=manager
1 column=professional data:salary, timestamp=1526269352605, value=50000
1 row(s) in 0.2230 seconds
3), export the data of hbase table emp to hdfs path/hbase/emp_bak above
localhost:bin a6$ pwd

/Users/a6/Applications/hbase-1.2.6/bin
localhost:bin a6$ hbase org.apache.hadoop.hbase.mapreduce.Export emp /hbase/emp_bak
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/ impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
2018-05-15 17:31:18,340 WARN [main] util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2018-05-15 17:31:18,412 INFO [main] mapreduce.Export: versions=1, starttime=0, endtime=9223372036854775807, keepDeletedCells=false
2018-05-15 17:31:19,224 INFO [main] client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
2018-05-15 17:31:23,325 INFO [main] zookeeper.RecoverableZooKeeper: Process identifier=hconnection-0x5ed731d0 connecting to ZooKeeper ensemble=localhost:2182
2018-05-15 17:31:23,332 INFO [main] zookeeper.ZooKeeper: Client environment:zookeeper.version=3.4.6-1569965, built on 02/20/2014 09:09 GMT
2018-05-15 17:31:23,333 INFO [main] zookeeper.ZooKeeper: Client environment:host.name=localhost
2018-05-15 17:31:23,333 INFO [main] zookeeper.ZooKeeper: Client environment:java.version=1.8.0_131
2018-05-15 17:31:23,333 INFO [main] zookeeper.ZooKeeper: Client environment:java.vendor=Oracle Corporation
2018-05-15 17:31:23,333 INFO [main] zookeeper.ZooKeeper: Client environment:java.home=/Library/Java/JavaVirtualMachines/jdk1.8.0_131.jdk/Contents/Home/jre
2018-05-15 17:31:23,333 INFO [main] zookeeper.ZooKeeper: Client environment:java.class.path=/Users/a6/Applications/hbase-1.2.6/bin/../conf :/Library/Java/JavaVirtualMachines/jdk1.8.0_131.jdk/Contents/Home/lib/tools.jar:/Users/a6/Applications/hbase-1.2.6/bin/..:/Users/a6/Applications/ hbase-1.2.6/bin/../lib/activation-1.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/aopalliance-1.0.jar:/Users/a6/ Applications/hbase-1.2.6/bin/../lib/apacheds-i18n-2.0.0-M15.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/apacheds-kerberos -codec-2.0.0-M15.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/api-asn1-api-1.0.0-M20.jar:/Users/a6/ Applications/hbase-1.2.6/bin/../lib/api-util-1.0.0-M20.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/asm-3.1 .jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/avro-1.7.4.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib /commons-beanutils-1.7.0.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-beanutils-core-1.8.0.jar:/Users/a6/Applications/ hbase-1 .2.6/bin/../lib/commons-cli-1.2.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-codec-1.9.jar:/Users/a6 /Applications/hbase-1.2.6/bin/../lib/commons-collections-3.2.2.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-compress- 1.4.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-configuration-1.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/. ./lib/commons-daemon-1.0.13.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-digester-1.8.jar:/Users/a6/Applications/hbase -1.2.6/bin/../lib/commons-el-1.0.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-httpclient-3.1.jar:/Users /a6/Applications/hbase-1.2.6/bin/../lib/commons-io-2.4.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-lang- 2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-logging-1.2.jar:/Users/a6/Applications/hbase-1.2.6/bin/../ lib/commons-math-2.2.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-math3-3.1.1.jar:/Users/a6/Applications/hbase-1.2 .6/bin/../lib/commo ns-net-3.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/disruptor-3.3.0.jar:/Users/a6/Applications/hbase-1.2.6/bin /../lib/findbugs-annotations-1.3.9-1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/guava-12.0.1.jar:/Users/a6 /Applications/hbase-1.2.6/bin/../lib/guice-3.0.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/guice-servlet-3.0.jar: /Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-annotations-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/ hadoop-auth-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-client-2.5.1.jar:/Users/a6/Applications/hbase-1.2 .6/bin/../lib/hadoop-common-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-hdfs-2.5.1.jar: /Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-mapreduce-client-app-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/. ./lib/hadoop-mapreduce-client-common-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-mapreduce-client-core-2.5.1. jar:/Users/a6/Applications/hbase-1.2.6/bin/../ lib/hadoop-mapreduce-client-jobclient-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-mapreduce-client-shuffle-2.5.1.jar: /Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-yarn-api-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../ lib/hadoop-yarn-client-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-yarn-common-2.5.1.jar:/Users/a6 /Applications/hbase-1.2.6/bin/../lib/hadoop-yarn-server-common-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/ hbase-annotations-1.2.6-tests.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-annotations-1.2.6.jar:/Users/a6/Applications/hbase -1.2.6/bin/../lib/hbase-client-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-common-1.2.6- tests.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-common-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/. ./lib/hbase-examples-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-external-blockcache-1.2.6.jar:/Users/a6 /Applications/hbase-1.2.6/bin/. ./lib/hbase-hadoop-compat-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-hadoop2-compat-1.2.6.jar:/Users /a6/Applications/hbase-1.2.6/bin/../lib/hbase-it-1.2.6-tests.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/ hbase-it-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-prefix-tree-1.2.6.jar:/Users/a6/Applications/hbase -1.2.6/bin/../lib/hbase-procedure-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-protocol-1.2.6. jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-resource-bundle-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/. ./lib/hbase-rest-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-server-1.2.6-tests.jar:/Users/a6 /Applications/hbase-1.2.6/bin/../lib/hbase-server-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-shell- 1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-thrift-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin /../lib/htrace-core-3.1.0-incubating.jar:/Users/a6/Applications/hbase- 1.2.6/bin/../lib/httpclient-4.2.5.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/httpcore-4.4.1.jar:/Users/ a6/Applications/hbase-1.2.6/bin/../lib/jackson-core-asl-1.9.13.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jackson -jaxrs-1.9.13.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jackson-mapper-asl-1.9.13.jar:/Users/a6/Applications/hbase- 1.2.6/bin/../lib/jackson-xc-1.9.13.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jamon-runtime-2.4.1.jar :/Users/a6/Applications/hbase-1.2.6/bin/../lib/jasper-compiler-5.5.23.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib /jasper-runtime-5.5.23.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/java-xmlbuilder-0.4.jar:/Users/a6/Applications/hbase-1.2. 6/bin/../lib/javax.inject-1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jaxb-api-2.2.2.jar:/Users/ a6/Applications/hbase-1.2.6/bin/../lib/jaxb-impl-2.2.3-1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jcodings -1.0.8.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jersey-client- 1.9.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jersey-core-1.9.jar:/Users/a6/Applications/hbase-1.2.6/bin/../ lib/jersey-guice-1.9.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jersey-json-1.9.jar:/Users/a6/Applications/hbase-1.2.6 /bin/../lib/jersey-server-1.9.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jets3t-0.9.0.jar:/Users/a6/Applications /hbase-1.2.6/bin/../lib/jettison-1.3.3.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jetty-6.1.26.jar: /Users/a6/Applications/hbase-1.2.6/bin/../lib/jetty-sslengine-6.1.26.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/ jetty-util-6.1.26.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/joni-2.1.2.jar:/Users/a6/Applications/hbase-1.2.6 /bin/../lib/jruby-complete-1.6.8.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jsch-0.1.42.jar:/Users/a6 /Applications/hbase-1.2.6/bin/../lib/jsp-2.1-6.1.14.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jsp-api- 2.1-6.1.14.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/junit-4.12.jar:/Use rs/a6/Applications/hbase-1.2.6/bin/../lib/leveldbjni-all-1.8.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/libthrift-0.9 .3.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/log4j-1.2.17.jar:/Users/a6/Applications/hbase-1.2.6/bin/.. /lib/metrics-core-2.2.0.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/netty-all-4.0.23.Final.jar:/Users/a6/ Applications/hbase-1.2.6/bin/../lib/paranamer-2.3.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/protobuf-java-2.5.0.jar :/Users/a6/Applications/hbase-1.2.6/bin/../lib/servlet-api-2.5-6.1.14.jar:/Users/a6/Applications/hbase-1.2.6/bin/.. /lib/servlet-api-2.5.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/slf4j-api-1.7.7.jar:/Users/a6/Applications/hbase- 1.2.6/bin/../lib/slf4j-log4j12-1.7.5.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/snappy-java-1.0.4.1.jar :/Users/a6/Applications/hbase-1.2.6/bin/../lib/spymemcached-2.11.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/xmlenc -0.52.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/xz-1.0. jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/zookeeper-3.4.6.jar:/Users/a6/Applications/hadoop-2.6.5/etc/hadoop:/Users/ a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jaxb-impl-2.2.3-1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib /jsr305-1.3.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/activation-1.1.jar:/Users/a6/Applications/hadoop-2.6.5/share /hadoop/common/lib/curator-recipes-2.6.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-configuration-1.6.jar:/Users/a6 /Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-beanutils-1.7.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/xz- 1.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/junit-4.11.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/ lib/commons-httpclient-3.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/stax-api-1.0-2.jar:/Users/a6/Applications/hadoop- 2.6.5/share/hadoop/common/lib/slf4j-log 4j12-1.7.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/apacheds-i18n-2.0.0-M15.jar:/Users/a6/Applications/hadoop- 2.6.5/share/hadoop/common/lib/httpclient-4.2.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jaxb-api-2.2.2.jar :/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/mockito-all-1.8.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common /lib/jackson-jaxrs-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-logging-1.1.3.jar:/Users/a6/Applications /hadoop-2.6.5/share/hadoop/common/lib/jasper-compiler-5.5.23.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/slf4j-api- 1.7.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jersey-json-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/ hadoop/common/lib/jasper-runtime-5.5.23.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/avro-1.7.4.jar:/Users/a6/ Applications/hadoop-2.6.5/share/hadoop/common/lib/log4j-1.2.17.jar :/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-cli-1.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib /commons-digester-1.8.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/servlet-api-2.5.jar:/Users/a6/Applications/hadoop-2.6.5 /share/hadoop/common/lib/hadoop-annotations-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/protobuf-java-2.5.0.jar: /Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/hadoop-auth-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/ lib/xmlenc-0.52.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jackson-xc-1.9.13.jar:/Users/a6/Applications/hadoop-2.6. 5/share/hadoop/common/lib/jetty-util-6.1.26.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/guava-11.0.2.jar:/ Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-compress-1.4.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib /htrace-core-3.0.4.jar:/Users/a6/App lications/hadoop-2.6.5/share/hadoop/common/lib/commons-io-2.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jackson-core-asl -1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jersey-core-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share /hadoop/common/lib/jsp-api-2.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-codec-1.4.jar:/Users/a6/Applications /hadoop-2.6.5/share/hadoop/common/lib/netty-3.6.2.Final.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/curator-framework- 2.6.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jetty-6.1.26.jar:/Users/a6/Applications/hadoop-2.6.5/share/ hadoop/common/lib/commons-beanutils-core-1.8.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jersey-server-1.9.jar:/Users/ a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/java-xmlbuilder-0.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/curator-client -2.6.0.jar:/Users/a6/Applica tions/hadoop-2.6.5/share/hadoop/common/lib/paranamer-2.3.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/zookeeper-3.4.6.jar :/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-collections-3.2.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common /lib/jettison-1.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/asm-3.2.jar:/Users/a6/Applications/hadoop-2.6.5/share /hadoop/common/lib/api-asn1-api-1.0.0-M20.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/apacheds-kerberos-codec-2.0. 0-M15.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/hamcrest-core-1.3.jar:/Users/a6/Applications/hadoop-2.6.5/share/ hadoop/common/lib/api-util-1.0.0-M20.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-net-3.1.jar:/Users/ a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/gson-2.2.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jets3t-0.9 .0.jar:/Users/a6/Applications/hadoop-2.6.5/sh are/hadoop/common/lib/commons-lang-2.6.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jsch-0.1.42.jar:/Users/a6/ Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-el-1.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/snappy-java-1.0 .4.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jackson-mapper-asl-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5 /share/hadoop/common/lib/commons-math3-3.1.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/httpcore-4.2.5.jar:/Users /a6/Applications/hadoop-2.6.5/share/hadoop/common/hadoop-common-2.6.5-tests.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/hadoop- nfs-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/hadoop-common-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/ share/hadoop/hdfs:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/jsr305-1.3.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/ hadoop/hdfs/lib/xercesImpl-2.9.1.jar:/Users/a6/Appl ications/hadoop-2.6.5/share/hadoop/hdfs/lib/commons-logging-1.1.3.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/jasper-runtime -5.5.23.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/log4j-1.2.17.jar:/Users/a6/Applications/hadoop-2.6.5/share /hadoop/hdfs/lib/commons-cli-1.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/xml-apis-1.3.04.jar:/Users/a6 /Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/servlet-api-2.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/protobuf-java- 2.5.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/xmlenc-0.52.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/ hdfs/lib/jetty-util-6.1.26.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/guava-11.0.2.jar:/Users/a6/Applications/ hadoop-2.6.5/share/hadoop/hdfs/lib/htrace-core-3.0.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/commons-io-2.4 .jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/jackson-cor e-asl-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/jersey-core-1.9.jar:/Users/a6/Applications/hadoop-2.6. 5/share/hadoop/hdfs/lib/jsp-api-2.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/commons-codec-1.4.jar:/Users/ a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/netty-3.6.2.Final.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/jetty -6.1.26.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/jersey-server-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share /hadoop/hdfs/lib/asm-3.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/commons-lang-2.6.jar:/Users/a6/Applications/hadoop -2.6.5/share/hadoop/hdfs/lib/commons-el-1.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/jackson-mapper-asl-1.9. 13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/commons-daemon-1.0.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/ hadoop/hdfs/hadoop-hdfs-2.6.5-tests.jar:/Users/a6/Applications/hadoop-2.6.5/ share/hadoop/hdfs/hadoop-hdfs-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/hadoop-hdfs-nfs-2.6.5.jar:/Users/ a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jaxb-impl-2.2.3-1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib /jsr305-1.3.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/activation-1.1.jar:/Users/a6/Applications/hadoop-2.6.5/share /hadoop/yarn/lib/aopalliance-1.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/guice-servlet-3.0.jar:/Users/a6/Applications/hadoop -2.6.5/share/hadoop/yarn/lib/xz-1.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/commons-httpclient-3.1.jar:/Users /a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/stax-api-1.0-2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/ jline-0.9.94.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jaxb-api-2.2.2.jar:/Users/a6/Applications/hadoop-2.6. 5/share/hadoop/yarn/lib/jackson-jaxrs-1.9.13.jar:/Users/a6/Applications/h adoop-2.6.5/share/hadoop/yarn/lib/commons-logging-1.1.3.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jersey-json-1.9 .jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/log4j-1.2.17.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn /lib/commons-cli-1.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/servlet-api-2.5.jar:/Users/a6/Applications/hadoop-2.6 .5/share/hadoop/yarn/lib/protobuf-java-2.5.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jackson-xc-1.9.13. jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jetty-util-6.1.26.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/ yarn/lib/guava-11.0.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/commons-compress-1.4.1.jar:/Users/a6/Applications/ hadoop-2.6.5/share/hadoop/yarn/lib/commons-io-2.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jackson-core-asl-1.9 .13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jersey-c ore-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/commons-codec-1.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/ hadoop/yarn/lib/netty-3.6.2.Final.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jetty-6.1.26.jar:/Users/a6/ Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jersey-server-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/guice-3.0.jar :/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jersey-client-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib /jersey-guice-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/zookeeper-3.4.6.jar:/Users/a6/Applications/hadoop-2.6.5 /share/hadoop/yarn/lib/commons-collections-3.2.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jettison-1.1.jar:/Users/a6 /Applications/hadoop-2.6.5/share/hadoop/yarn/lib/asm-3.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/commons-lang-2.6. jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yar n/lib/leveldbjni-all-1.8.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jackson-mapper-asl-1.9.13.jar:/Users/a6/ Applications/hadoop-2.6.5/share/hadoop/yarn/lib/javax.inject-1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-common-2.6 .5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-server-web-proxy-2.6.5.jar:/Users/a6/Applications/hadoop-2.6 .5/share/hadoop/yarn/hadoop-yarn-server-nodemanager-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-server-resourcemanager- 2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-server-common-2.6.5.jar:/Users/a6/Applications/hadoop-2.6. 5/share/hadoop/yarn/hadoop-yarn-client-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-registry-2.6.5.jar :/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-applications-distributedshell-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop /yarn/hadoop-yarn-server -applicationhistoryservice-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-applications-unmanaged-am-launcher-2.6.5.jar:/Users/a6 /Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-server-tests-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop- yarn-api-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/aopalliance-1.0.jar:/Users/a6/Applications/hadoop-2.6.5/ share/hadoop/mapreduce/lib/guice-servlet-3.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/xz-1.0.jar:/Users/a6/Applications/ hadoop-2.6.5/share/hadoop/mapreduce/lib/junit-4.11.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/avro-1.7.4.jar:/ Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/log4j-1.2.17.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/hadoop -annotations-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/protobuf-java-2.5.0.jar:/Users/a6/Applications/had oop-2.6.5/share/hadoop/mapreduce/lib/commons-compress-1.4.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/commons-io-2.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/jackson-core-asl-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/jersey-core-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/netty-3.6.2.Final.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/jersey-server-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/guice-3.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/jersey-guice-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/paranamer-2.3.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/asm-3.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/hamcrest-core-1.3.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/leveldbjni-all-1.8.jar:/Users/a6/Applications /hadoop-2.6.5/share/hadoop/mapreduce/lib/snappy-java-1.0.4.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/jackson-mapper-asl-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/javax.inject-1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-client-common-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-client-shuffle-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-client-app-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.6.5-tests.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-client-hs-plugins-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-client-hs-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/m apreduce/hadoop-mapreduce-examples-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/contrib/capacity-scheduler/*.jar
2018-05-15 17:31:23,336 INFO [main] zookeeper.ZooKeeper: Client environment:java.library.path=/Users/a6/Applications/hadoop-2.6.5/lib/native
2018-05-15 17:31:23,336 INFO [main] zookeeper.ZooKeeper: Client environment:java.io.tmpdir=/var/folders/bm/dccwv2v97y75hdshqnh1bbpr0000gn/T/
2018-05-15 17:31:23,336 INFO [main] zookeeper.ZooKeeper: Client environment:java.compiler=
2018-05-15 17:31:23,336 INFO [main] zookeeper.ZooKeeper: Client environment:os.name=Mac OS X
2018-05-15 17:31:23,336 INFO [main] zookeeper.ZooKeeper: Client environment:os.arch=x86_64
2018-05-15 17:31:23,336 INFO [main] zookeeper.ZooKeeper: Client environment:os.version=10.13.2
2018-05-15 17:31:23,337 INFO [main] zookeeper.ZooKeeper: Client environment:user.name=a6
2018-05-15 17:31:23,337 INFO [main] zookeeper.ZooKeeper: Client environment:user.home=/Users/a6
2018-05-15 17:31:23,337 INFO [main] zookeeper.ZooKeeper: Client environment:user.dir=/Users/a6/Applications/hbase-1.2.6/bin
2018-05-15 17:31:23,338 INFO [main] zookeeper.ZooKeeper: Initiating client connection, connectString=localhost:2182 sessionTimeout=90000 watcher=hconnection-0x5ed731d00x0, quorum=localhost:2182, baseZNode=/hbase
2018-05-15 17:31:23,360 INFO [main-SendThread(localhost:2182)] zookeeper.ClientCnxn: Opening socket connection to server localhost/127.0.0.1:2182. Will not attempt to authenticate using SASL (unknown error)
2018-05-15 17:31:23,361 INFO [main-SendThread(localhost:2182)] zookeeper.ClientCnxn: Socket connection established to localhost/127.0.0.1:2182, initiating session
2018-05-15 17:31:23,371 INFO [main-SendThread(localhost:2182)] zookeeper.ClientCnxn: Session establishment complete on server localhost/127.0.0.1:2182, sessionid = 0x163615ea3e6000c, negotiated timeout = 40000
2018-05-15 17:31:23,455 INFO [main] util.RegionSizeCalculator: Calculating region sizes for table "emp".
2018-05-15 17:31:23,834 INFO [main] client.ConnectionManager$HConnectionImplementation: Closing master protocol: MasterService
2018-05-15 17:31:23,834 INFO [main] client.ConnectionManager$HConnectionImplementation: Closing zookeeper sessionid=0x163615ea3e6000c
2018-05-15 17:31:23,837 INFO [main] zookeeper.ZooKeeper: Session: 0x163615ea3e6000c closed
2018-05-15 17:31:23,837 INFO [main-EventThread] zookeeper.ClientCnxn: EventThread shut down
2018-05-15 17:31:23,933 INFO [main] mapreduce.JobSubmitter: number of splits:1
2018-05-15 17:31:23,955 INFO [main] Configuration.deprecation: io.bytes.per.checksum is deprecated. Instead, use dfs.bytes-per-checksum
2018-05-15 17:31:24,115 INFO [main] mapreduce.JobSubmitter: Submitting tokens for job: job_1526346976211_0003
2018-05-15 17:31:24,513 INFO [main] impl.YarnClientImpl: Submitted application application_1526346976211_0003
2018-05-15 17:31:24,561 INFO [main] mapreduce.Job: The url to track the job: http://localhost:8088/proxy/application_1526346976211_0003/
2018-05-15 17:31:24,562 INFO [main] mapreduce.Job: Running job: job_1526346976211_0003
2018-05-15 17:31:36,842 INFO [main] mapreduce.Job: Job job_1526346976211_0003 running in uber mode : false
2018-05-15 17:31:36,844 INFO [main] mapreduce.Job: map 0% reduce 0%
2018-05-15 17:31:43,965 INFO [main] mapreduce.Job: map 100% reduce 0%
2018-05-15 17:31:44,980 INFO [main] mapreduce.Job: Job job_1526346976211_0003 completed successfully
2018-05-15 17:31:45,120 INFO [main] mapreduce.Job: Counters: 43
File System Counters
FILE: Number of bytes read=0
FILE: Number of bytes written=139577
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=64
HDFS: Number of bytes written=323
HDFS: Number of read operations=4
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=4842
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=4842
Total vcore-seconds taken by all map tasks=4842
Total megabyte-seconds taken by all map tasks=4958208
Map-Reduce Framework
Map input records=1
Map output records=1
Input split bytes=64
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=73
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=111149056
HBase Counters
BYTES_IN_REMOTE_RESULTS=0
BYTES_IN_RESULTS=210
MILLIS_BETWEEN_NEXTS=517
NOT_SERVING_REGION_EXCEPTION=0
NUM_SCANNER_RESTARTS=0
NUM_SCAN_RESULTS_STALE=0
REGIONS_SCANNED=1
REMOTE_RPC_CALLS=0
REMOTE_RPC_RETRIES=0
ROWS_FILTERED=0
ROWS_SCANNED=1
RPC_CALLS=3
RPC_RETRIES=0
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=323
查看生成的目录并查看导出到hdfs上的二进制数据
localhost:bin a6$ hadoop dfs -ls /hbase/emp_bak

DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

18/05/15 17:34:29 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 2 items
-rw-r--r-- 1 a6 supergroup 0 2018-05-15 17:31 /hbase/emp_bak/_SUCCESS
-rw-r--r-- 1 a6 supergroup 323 2018-05-15 17:31 /hbase/emp_bak/part-m-00000
localhost:bin a6$ hadoop dfs -cat /hbase/emp_bak/*
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

18/05/15 17:34:37 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
SEQ1org.apache.hadoop.hbase.io.ImmutableBytesWritable%org.apache.hadoop.hbase.client.ResultI~
?F?;?H??[$???1?
,
personal datacity ????,(2 hyderabad

personal dataname ????,(2raju
5
1professional data
designation ????,(2manager
.
1professional datasalary ????,(250000 )

将hbase数据备份到本地文件
localhost:bin a6$ hbase org.apache.hadoop.hbase.mapreduce.Export emp file:///Users/a6/Applications/experiment_data/hbase_data/bak
4)、创建备份到的目标hbase表
create ‘emp_bak‘,‘personal data‘,‘professional data‘

5)、将hdfs上的数据导入到备份目标表中

localhost:bin a6$ hbase org.apache.hadoop.hbase.mapreduce.Driver import emp_bak /hbase/emp_bak/*

SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
2018-05-15 17:37:07,154 WARN [main] util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2018-05-15 17:37:08,045 INFO [main] client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
2018-05-15 17:37:09,852 INFO [main] input.FileInputFormat: Total input paths to process : 1
2018-05-15 17:37:09,907 INFO [main] mapreduce.JobSubmitter: number of splits:1
2018-05-15 17:37:10,026 INFO [main] mapreduce.JobSubmitter: Submitting tokens for job: job_1526346976211_0005
2018-05-15 17:37:10,384 INFO [main] impl.YarnClientImpl: Submitted application application_1526346976211_0005
2018-05-15 17:37:10,413 INFO [main] mapreduce.Job: The url to track the job: http://localhost:8088/proxy/application_1526346976211_0005/
2018-05-15 17:37:10,413 INFO [main] mapreduce.Job: Running job: job_1526346976211_0005
2018-05-15 17:37:18,621 INFO [main] mapreduce.Job: Job job_1526346976211_0005 running in uber mode : false
2018-05-15 17:37:18,622 INFO [main] mapreduce.Job: map 0% reduce 0%
2018-05-15 17:37:25,705 INFO [main] mapreduce.Job: map 100% reduce 0%
2018-05-15 17:37:25,716 INFO [main] mapreduce.Job: Job job_1526346976211_0005 completed successfully
2018-05-15 17:37:25,832 INFO [main] mapreduce.Job: Counters: 30
File System Counters
FILE: Number of bytes read=0
FILE: Number of bytes written=139121
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=436
HDFS: Number of bytes written=0
HDFS: Number of read operations=3
HDFS: Number of large read operations=0
HDFS: Number of write operations=0
Job Counters
Launched map tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=4804
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=4804
Total vcore-seconds taken by all map tasks=4804
Total megabyte-seconds taken by all map tasks=4919296
Map-Reduce Framework
Map input records=1
Map output records=1
Input split bytes=113
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=86
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=112197632
File Input Format Counters
Bytes Read=323
File Output Format Counters
Bytes Written=0
2018-05-15 17:37:25,842 INFO [main] mapreduce.Job: Running job: job_1526346976211_0005
2018-05-15 17:37:25,848 INFO [main] mapreduce.Job: Job job_1526346976211_0005 running in uber mode : false
2018-05-15 17:37:25,849 INFO [main] mapreduce.Job: map 100% reduce 0%
2018-05-15 17:37:25,855 INFO [main] mapreduce.Job: Job job_1526346976211_0005 completed successfully
2018-05-15 17:37:25,862 INFO [main] mapreduce.Job: Counters: 30
File System Counters
FILE: Number of bytes read=0
FILE: Number of bytes written=139121
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=436
HDFS: Number of bytes written=0
HDFS: Number of read operations=3
HDFS: Number of large read operations=0
HDFS: Number of write operations=0
Job Counters
Launched map tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=4804
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=4804
Total vcore-seconds taken by all map tasks=4804
Total megabyte-seconds taken by all map tasks=4919296
Map-Reduce Framework
Map input records=1
Map output records=1
Input split bytes=113
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=86
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=112197632
File Input Format Counters
Bytes Read=323
File Output Format Counters
Bytes Written=0

这样基本就完成了hbase表中的数据我们可以转化为mapreduce任务进程开始导出导入。当然也可以这么备份的。

6)、最后我们仔细看一下hbase导出和导入的关键命令参数

localhost:bin a6$ hbase org.apache.hadoop.hbase.mapreduce.Export

ERROR: Wrong number of arguments: 0
Usage: Export [-D ]* [ [ []] [^[regex pattern] or [Prefix] to filter]]

Note: -D properties will be applied to the conf used.
For example:
-D mapreduce.output.fileoutputformat.compress=true
-D mapreduce.output.fileoutputformat.compress.codec=org.apache.hadoop.io.compress.GzipCodec
-D mapreduce.output.fileoutputformat.compress.type=BLOCK
Additionally, the following SCAN properties can be specified
to control/limit what is exported..
-D hbase.mapreduce.scan.column.family=
-D hbase.mapreduce.include.deleted.rows=true
-D hbase.mapreduce.scan.row.start=
-D hbase.mapreduce.scan.row.stop=
For performance consider the following properties:
-Dhbase.client.scanner.caching=100
-Dmapreduce.map.speculative=false
-Dmapreduce.reduce.speculative=false
For tables with very wide rows consider setting the batch size as below:
-Dhbase.export.scanner.batch=10
localhost:bin a6$ hbase org.apache.hadoop.hbase.mapreduce.Driver import
ERROR: Wrong number of arguments: 0
Usage: Import [options]
By default Import will load data directly into HBase. To instead generate
HFiles of data to prepare for a bulk data load, pass the option:
-Dimport.bulk.output=/path/for/output
To apply a generic org.apache.hadoop.hbase.filter.Filter to the input, use
-Dimport.filter.class=
-Dimport.filter.args= NOTE: The filter will be applied BEFORE doing key renames via the HBASE_IMPORTER_RENAME_CFS property. Futher, filters will only use the Filter#filterRowKey(byte[] buffer, int offset, int length) method to identify whether the current row needs to be ignored completely for processing and Filter#filterKeyValue(KeyValue) method to determine if the KeyValue should be added; Filter.ReturnCode#INCLUDE and #INCLUDE_AND_NEXT_COL will be considered as including the KeyValue.
To import data exported from HBase 0.94, use
-Dhbase.import.version=0.94
For performance consider the following options:
-Dmapreduce.map.speculative=false
-Dmapreduce.reduce.speculative=false
-Dimport.wal.durability=

二、基于Hbase snapshot数据快速备份方法

1.Snapshot备份的优点是什么?

HBase以往数据的备份基于distcp或者copyTable等工具,这些备份机制或多或少对当前的online数据读写存在一定的影响,Snapshot提供了一种快速的数据备份方式,无需进行数据copy。
参见下图
分享图片
2.HBase数据的备份的方式有几种?Snapshot包括在线和离线的,他们之间有什么区别?

Snapshot包括在线和离线的
(1)离线方式是disabletable,由HBase Master遍历HDFS中的table metadata和hfiles,建立对他们的引用。
(2)在线方式是enabletable,由Master指示region server进行snapshot操作,在此过程中,master和regionserver之间类似两阶段commit的snapshot操作。
分享图片

HFile是不可变的,只能append和delete, region的split和compact,都不会对snapshot引用的文件做删除(除非删除snapshot文件),这些文件会归档到archive目录下,进而需要重新调整snapshot文件中相关hfile的引用位置关系。

分享图片
基于snapshot文件,可以做clone一个新表,restore,export到另外一个集群中操作;其中clone生成的新表只是增加元数据,相关的数据文件还是复用snapshot指定的数据文件
参见clone新表操作示意图:

分享图片

3.snashot的shell的命令都由哪些?如何删除、查看快照?如何导出到另外一个集群?

snashot相关的操作命令如下:

1)创建快照(查看快照->查看快照snapshot命令相关参数->创建快照—>查看快照)

hbase(main):002:0> list_snapshots

SNAPSHOT TABLE + CREATION TIME
0 row(s) in 0.0290 seconds

=> []
hbase(main):003:0> snapshot

ERROR: wrong number of arguments (0 for 2)

Here is some help for this command:
Take a snapshot of specified table. Examples:

hbase> snapshot ‘sourceTable‘, ‘snapshotName‘
hbase> snapshot ‘namespace:sourceTable‘, ‘snapshotName‘, {SKIP_FLUSH => true}


hbase(main):004:0> snapshot ‘emp‘,‘emp_snapshot‘
0 row(s) in 0.3730 seconds

hbase(main):005:0> list_snapshots
SNAPSHOT TABLE + CREATION TIME
emp_snapshot emp (Wed May 16 09:44:53 +0800 2018)
1 row(s) in 0.0190 seconds

=> ["emp_snapshot"]

2)删除并查看快照

hbase(main):006:0> delete_snapshot ‘emp_snapshot‘

0 row(s) in 0.0390 seconds

hbase(main):007:0> list_snapshots
SNAPSHOT TABLE + CREATION TIME
0 row(s) in 0.0040 seconds

=> []

3)基于快照,clone一个新表

hbase(main):011:0> clone_snapshot ‘emp_snapshot‘,‘new_emp‘

0 row(s) in 0.5290 seconds

hbase(main):013:0> scan ‘new_emp‘
ROW COLUMN+CELL
1 column=personal data:city, timestamp=1526269334560, value=hyderabad
1 column=personal data:name, timestamp=1526269326929, value=raju
1 column=professional data:designation, timestamp=1526269345044, value=manager
1 column=professional data:salary, timestamp=1526269352605, value=50000
1 row(s) in 0.1050 seconds

hbase(main):014:0> desc ‘new_emp‘
Table new_emp is ENABLED
new_emp
COLUMN FAMILIES DESCRIPTION
{NAME => ‘personal data‘, BLOOMFILTER => ‘ROW‘, VERSIONS => ‘1‘, IN_MEMORY => ‘false‘, KEEP_DELETED_CELLS => ‘FALSE‘, DATA_BLOCK_ENCODING => ‘NONE‘, TTL => ‘FOREVER‘, COMPRESSION => ‘NONE‘, MIN_VERSIONS => ‘0‘, BLOCKCACHE => ‘true‘, BLOCKSIZE => ‘65536‘, REPLICATION_SCOPE
=> ‘0‘}
{NAME => ‘professional data‘, BLOOMFILTER => ‘ROW‘, VERSIONS => ‘1‘, IN_MEMORY => ‘false‘, KEEP_DELETED_CELLS => ‘FALSE‘, DATA_BLOCK_ENCODING => ‘NONE‘, TTL => ‘FOREVER‘, COMPRESSION => ‘NONE‘, MIN_VERSIONS => ‘0‘, BLOCKCACHE => ‘true‘, BLOCKSIZE => ‘65536‘, REPLICATION_S
COPE => ‘0‘}
2 row(s) in 0.0370 seconds

4)基于快照恢复表(原hbase表emp需要删除)

hbase(main):027:0>gt; list

TABLE
new_emp
t1
test
3 row(s) in 0.0130 seconds

=> ["new_emp", "t1", "test"]
hbase(main):028:0> list_snapshots
SNAPSHOT TABLE + CREATION TIME
emp_snapshot emp (Wed May 16 09:45:25 +0800 2018)
1 row(s) in 0.0130 seconds

=> ["emp_snapshot"]
hbase(main):029:0> restore_snapshot ‘emp_snapshot‘
0 row(s) in 0.3700 seconds

hbase(main):030:0> list
TABLE
emp
new_emp
t1
test
4 row(s) in 0.0240 seconds

=> ["emp", "new_emp", "t1", "test"]

5)基于快照将数据导出到另外一个集群中的本地文件中

利用mapreduce job将emp_snapshot这个snapshot 导出到本地目录/Users/a6/Applications/experiment_data/hbase_data中的bak_emp_snapshot(不存在)

localhost:bin a6$ hbase org.apache.hadoop.hbase.snapshot.ExportSnapshot -snapshot ‘emp_snapshot‘ -copy-to file:///Users/a6/Applications/experiment_data/hbase_data/bak_emp_snapshot -mappers 16

SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
2018-05-16 10:21:47,310 WARN [main] util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2018-05-16 10:21:47,633 INFO [main] snapshot.ExportSnapshot: Copy Snapshot Manifest
2018-05-16 10:21:47,922 INFO [main] client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
2018-05-16 10:21:50,233 INFO [main] snapshot.ExportSnapshot: Loading Snapshot ‘emp_snapshot‘ hfile list
2018-05-16 10:21:50,547 INFO [main] mapreduce.JobSubmitter: number of splits:2
2018-05-16 10:21:50,732 INFO [main] mapreduce.JobSubmitter: Submitting tokens for job: job_1526434993990_0001
2018-05-16 10:21:51,182 INFO [main] impl.YarnClientImpl: Submitted application application_1526434993990_0001
2018-05-16 10:21:51,268 INFO [main] mapreduce.Job: The url to track the job: http://localhost:8088/proxy/application_1526434993990_0001/
2018-05-16 10:21:51,269 INFO [main] mapreduce.Job: Running job: job_1526434993990_0001
2018-05-16 10:22:02,425 INFO [main] mapreduce.Job: Job job_1526434993990_0001 running in uber mode : false
2018-05-16 10:22:02,427 INFO [main] mapreduce.Job: map 0% reduce 0%
2018-05-16 10:22:09,722 INFO [main] mapreduce.Job: map 50% reduce 0%
2018-05-16 10:22:10,731 INFO [main] mapreduce.Job: map 100% reduce 0%
2018-05-16 10:22:10,740 INFO [main] mapreduce.Job: Job job_1526434993990_0001 completed successfully
2018-05-16 10:22:10,848 INFO [main] mapreduce.Job: Counters: 37
File System Counters
FILE: Number of bytes read=9985
FILE: Number of bytes written=291407
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=408
HDFS: Number of bytes written=0
HDFS: Number of read operations=2
HDFS: Number of large read operations=0
HDFS: Number of write operations=0
Job Counters
Launched map tasks=2
Other local map tasks=2
Total time spent by all maps in occupied slots (ms)=9683
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=9683
Total vcore-seconds taken by all map tasks=9683
Total megabyte-seconds taken by all map tasks=9915392
Map-Reduce Framework
Map input records=2
Map output records=0
Input split bytes=408
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=155
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=212860928
org.apache.hadoop.hbase.snapshot.ExportSnapshot$Counter
BYTES_COPIED=9985
BYTES_EXPECTED=9985
BYTES_SKIPPED=0
COPY_FAILED=0
FILES_COPIED=2
FILES_SKIPPED=0
MISSING_FILES=0
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=0
2018-05-16 10:22:10,851 INFO [main] snapshot.ExportSnapshot: Finalize the Snapshot Export
2018-05-16 10:22:10,852 INFO [main] snapshot.ExportSnapshot: Verify snapshot integrity
2018-05-16 10:22:10,875 INFO [main] snapshot.ExportSnapshot: Export Completed: emp_snapshot

查看快照备份到本地的备份文件结构:

localhost:hbase_data a6$ ls  -R

bak_emp_snapshot

./bak_emp_snapshot:
archive

./bak_emp_snapshot/archive:
data

./bak_emp_snapshot/archive/data:
default

./bak_emp_snapshot/archive/data/default:
emp

./bak_emp_snapshot/archive/data/default/emp:
f8d3b4ead1603d0e9350dc426fce7fd7

./bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7:
personal data professional data

./bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/personal data:
9111be6b05e746ddb8507e8daf5a4eb0

./bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/professional data:
c264d32ef37b4b6f9953b388f007d059
localhost:hbase_data a6$

6)基于快照将数据导出到另外一个集群中的hdfs上

localhost:bin a6$ hbase org.apache.hadoop.hbase.snapshot.ExportSnapshot -snapshot ‘emp_snapshot‘ -copy-to hdfs:///hbase/bak_emp_snapshot -mappers 16

SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
2018-05-16 10:29:02,343 WARN [main] util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2018-05-16 10:29:03,034 INFO [main] snapshot.ExportSnapshot: Copy Snapshot Manifest
2018-05-16 10:29:03,423 INFO [main] client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
2018-05-16 10:29:04,368 INFO [main] snapshot.ExportSnapshot: Loading Snapshot ‘emp_snapshot‘ hfile list
2018-05-16 10:29:04,730 INFO [main] mapreduce.JobSubmitter: number of splits:2
2018-05-16 10:29:04,863 INFO [main] mapreduce.JobSubmitter: Submitting tokens for job: job_1526434993990_0002
2018-05-16 10:29:05,129 INFO [main] impl.YarnClientImpl: Submitted application application_1526434993990_0002
2018-05-16 10:29:05,160 INFO [main] mapreduce.Job: The url to track the job: http://localhost:8088/proxy/application_1526434993990_0002/
2018-05-16 10:29:05,160 INFO [main] mapreduce.Job: Running job: job_1526434993990_0002
2018-05-16 10:29:13,260 INFO [main] mapreduce.Job: Job job_1526434993990_0002 running in uber mode : false
2018-05-16 10:29:13,262 INFO [main] mapreduce.Job: map 0% reduce 0%
2018-05-16 10:29:18,354 INFO [main] mapreduce.Job: Task Id : attempt_1526434993990_0002_m_000000_0, Status : FAILED
Error: Java heap space
2018-05-16 10:29:19,377 INFO [main] mapreduce.Job: Task Id : attempt_1526434993990_0002_m_000001_0, Status : FAILED
Error: Java heap space
2018-05-16 10:29:25,432 INFO [main] mapreduce.Job: map 50% reduce 0%
2018-05-16 10:29:26,438 INFO [main] mapreduce.Job: map 100% reduce 0%
2018-05-16 10:29:26,450 INFO [main] mapreduce.Job: Job job_1526434993990_0002 completed successfully
2018-05-16 10:29:26,554 INFO [main] mapreduce.Job: Counters: 38
File System Counters
FILE: Number of bytes read=9985
FILE: Number of bytes written=281240
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=408
HDFS: Number of bytes written=9985
HDFS: Number of read operations=8
HDFS: Number of large read operations=0
HDFS: Number of write operations=8
Job Counters
Failed map tasks=2
Launched map tasks=4
Other local map tasks=4
Total time spent by all maps in occupied slots (ms)=17871
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=17871
Total vcore-seconds taken by all map tasks=17871
Total megabyte-seconds taken by all map tasks=18299904
Map-Reduce Framework
Map input records=2
Map output records=0
Input split bytes=408
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=235
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=257949696
org.apache.hadoop.hbase.snapshot.ExportSnapshot$Counter
BYTES_COPIED=9985
BYTES_EXPECTED=9985
BYTES_SKIPPED=0
COPY_FAILED=0
FILES_COPIED=2
FILES_SKIPPED=0
MISSING_FILES=0
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=0
2018-05-16 10:29:26,556 INFO [main] snapshot.ExportSnapshot: Finalize the Snapshot Export
2018-05-16 10:29:26,563 INFO [main] snapshot.ExportSnapshot: Verify snapshot integrity
2018-05-16 10:29:26,647 INFO [main] snapshot.ExportSnapshot: Export Completed: emp_snapshot

检验并查看hdfs文件:

localhost:hbase_data a6$ hadoop dfs -ls /hbase/

DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

18/05/16 10:29:34 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 2 items
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot
drwxr-xr-x - a6 supergroup 0 2018-05-15 17:31 /hbase/emp_bak
localhost:hbase_data a6$ hadoop dfs -ls /hbase/bak_emp_snapshot
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

18/05/16 10:29:45 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 2 items
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive
localhost:hbase_data a6$

查看生成快照文件的目录结构及其文件大小
localhost:hbase_data a6$ hadoop dfs -ls -R  /hbase/bak_emp_snapshot

DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

18/05/16 10:34:15 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot/.tmp
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot/emp_snapshot
-rw-r--r-- 1 a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot/emp_snapshot/.inprogress
-rw-r--r-- 1 a6 supergroup 30 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot/emp_snapshot/.snapshotinfo
-rw-r--r-- 1 a6 supergroup 703 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot/emp_snapshot/data.manifest
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/personal data
-rw-rw-rw- 1 a6 staff 4976 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/personal data/9111be6b05e746ddb8507e8daf5a4eb0
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/professional data
-rw-rw-rw- 1 a6 staff 5009 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/professional data/c264d32ef37b4b6f9953b388f007d059
localhost:hbase_data a6$
参考网址: https://blog.csdn.net/yangbutao/article/details/12911487

其他备份方法:https://www.cnblogs.com/ios123/p/6399699.html

Hbase表两种数据备份方法-导入和导出示例

本文将提供两种备份方法 ——

1) 基于Hbase提供的类对hbase中某张表进行备份

2) 基于Hbase snapshot数据快速备份方法

场合:由于线上和测试环境是分离的,无法在测试环境访问线上库,所以需要将线上的hbase表导出一部分到测试环境中的hbase表,这就是本文的由来。

一、基于hbase提供的类对hbase中某张表进行备份

本文使用hbase提供的类把hbase中某张表的数据导出hdfs,之后再导出到测试hbase表中。

首先介绍一下相关参数选项:

(1) 从hbase表导出(# 默认不写file://的时候就是导出到hdfs上了 )

HBase数据导出到HDFS或者本地文件

hbase org.apache.hadoop.hbase.mapreduce.Export emp file:///Users/a6/Applications/experiment_data/hbase_data/bak
HBase数据导出到本地文件
hbase org.apache.hadoop.hbase.mapreduce.Export emp /hbase/emp_bak

(2) 导入hbase表(# 默认不写file://的时候就是导出到hdfs上了 )

将hdfs上的数据导入到备份目标表中

localhost:bin a6$ hbase org.apache.hadoop.hbase.mapreduce.Driver import emp_bak /hbase/emp_bak/*
将本地文件上的数据导入到备份目标表中
hbase org.apache.hadoop.hbase.mapreduce.Driver import emp_bak file:///Users/a6/Applications/experiment_data/hbase_data/bak/*

(3) 导出时可以限制scanner.batch的大小
如果在hbase中的一个row出现大量的数据,那么导出时会报出ScannerTimeoutException的错误。这时候需要设置hbase.export.scaaner.batch 这个参数。这样导出时的错误就可以避免了。

hbase org.apache.hadoop.hbase.mapreduce.Export -Dhbase.export.scanner.batch=2000  emp file:///Users/a6/Applications/experiment_data/hbase_data/bak

(4)为了节省空间可以使用compress选项

hbase的数据导出的时候,如果不适用compress的选项,数据量的大小可能相差5倍。因此使用compress的选项,备份数据的时候是可以节省不少空间的。

并且本人测试了compress选项的导出速度,和无此选项时差别不大(几乎无差别):

hbase org.apache.hadoop.hbase.mapreduce.Export -Dhbase.export.scanner.batch=2000 -D mapred.output.compress=true  emp file:///Users/a6/Applications/experiment_data/hbase_data/bak
通过添加compress选项,最终导出文件的大小由335字节变成了325字节,

File Output Format Counters File Output Format Counters
Bytes Written=335 Bytes Written=323

(5)导出指定行键范围和列族

在公司准备要更换数据中心,需要将hbase数据库中的数据进行迁移。虽然进行hbase数据库数据迁移时,使用其自带的工具import和export是很方便的。只不过,在迁移大量数据时,可能需要运行很长的时间,甚至可能出错。这时,是可以通过指定行键范围和列族,来减少单次export工具的运行时间。可以看出,支持的选项有好几个。假如,我们想导出表test的数据,且只要列族Info,行键范围在000到001之间,可以这样写:

这样就可以了,且数据将会保存在hdfs中。
通过指定列族和行键范围,可以只导出部分数据,避免export启动的mapreduce任务运行时间过长。也就是可以分多次导出数据。
./hbase org.apache.hadoop.hbase.mapreduce.Export -D hbase.mapreduce.scan.column.family=Info -D hbase.mapreduce.scan.row.start=000 -D hbase.mapreduce.scan.row.stop=001 test /test_datas

闲话少叙,例子就来:

查到了HBase自带的export/import机制可以实现Backup Restore功能。而且可以实现增量备份。
原理都是用了MapReduce来实现的。
1、Export是以表为单位导出数据的,若想完成整库的备份需要执行n遍。
2、Export在shell中的调用方式类似如下格式:
./hbase org.apache.hadoop.hbase.mapreduce.Export 表名 备份路径 (版本号) (起始时间戳) (结束时间戳)
括号内为可选项,例如
Usage: Export [-D ]* [ [ []] [^[regex pattern] or [Prefix] to filter]]
hbase org.apache.hadoop.hbase.mapreduce.Export emp /hbase/emp_bak 1 123456789
备份 emp 这张表到 /hbase/emp_bak 目录下(最后一级目录必须由Export自己创建),版本号为1,备份记录从123456789这个时间戳开始到当前时间内所有的执行过put操作的记录。
注意:为什么是所有put操作记录?因为在备份时是扫描所有表中所有时间戳大于等于123456789这个值的记录并导出。如果是delete操作,则表中这条记录已经删除,扫描时也无法获取这条记录信息
当不指定时间戳时,备份的就是当前完整表中的数据。

1)、创建hbase表emp

localhost:bin a6$ pwd

/Users/a6/Applications/hbase-1.2.6/bin
localhost:bin a6$ hbase shell
create ‘emp‘,‘personal data‘,‘professional data‘

2)、插入数据并查看数据

将第一行的值插入到emp表如下所示。

hbase(main):005:0> put ‘emp‘,‘1‘,‘personal data:name‘,‘raju‘
0 row(s) in 0.6600 seconds
hbase(main):006:0> put ‘emp‘,‘1‘,‘personal data:city‘,‘hyderabad‘
0 row(s) in 0.0410 seconds
hbase(main):007:0> put ‘emp‘,‘1‘,‘professional data:designation‘,‘manager‘
0 row(s) in 0.0240 seconds
hbase(main):007:0> put ‘emp‘,‘1‘,‘professional data:salary‘,‘50000‘
0 row(s) in 0.0240 seconds

插入完成整个表格,会得到下面的输出。
hbase(main):002:0> scan ‘emp‘
ROW COLUMN+CELL
1 column=personal data:city, timestamp=1526269334560, value=hyderabad
1 column=personal data:name, timestamp=1526269326929, value=raju
1 column=professional data:designation, timestamp=1526269345044, value=manager
1 column=professional data:salary, timestamp=1526269352605, value=50000
1 row(s) in 0.2230 seconds
3)、将hbase表emp的数据导出到hdfs的路径/hbase/emp_bak上面
localhost:bin a6$ pwd

/Users/a6/Applications/hbase-1.2.6/bin
localhost:bin a6$ hbase org.apache.hadoop.hbase.mapreduce.Export emp /hbase/emp_bak
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
2018-05-15 17:31:18,340 WARN [main] util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2018-05-15 17:31:18,412 INFO [main] mapreduce.Export: versions=1, starttime=0, endtime=9223372036854775807, keepDeletedCells=false
2018-05-15 17:31:19,224 INFO [main] client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
2018-05-15 17:31:23,325 INFO [main] zookeeper.RecoverableZooKeeper: Process identifier=hconnection-0x5ed731d0 connecting to ZooKeeper ensemble=localhost:2182
2018-05-15 17:31:23,332 INFO [main] zookeeper.ZooKeeper: Client environment:zookeeper.version=3.4.6-1569965, built on 02/20/2014 09:09 GMT
2018-05-15 17:31:23,333 INFO [main] zookeeper.ZooKeeper: Client environment:host.name=localhost
2018-05-15 17:31:23,333 INFO [main] zookeeper.ZooKeeper: Client environment:java.version=1.8.0_131
2018-05-15 17:31:23,333 INFO [main] zookeeper.ZooKeeper: Client environment:java.vendor=Oracle Corporation
2018-05-15 17:31:23,333 INFO [main] zookeeper.ZooKeeper: Client environment:java.home=/Library/Java/JavaVirtualMachines/jdk1.8.0_131.jdk/Contents/Home/jre
2018-05-15 17:31:23,333 INFO [main] zookeeper.ZooKeeper: Client environment:java.class.path=/Users/a6/Applications/hbase-1.2.6/bin/../conf:/Library/Java/JavaVirtualMachines/jdk1.8.0_131.jdk/Contents/Home/lib/tools.jar:/Users/a6/Applications/hbase-1.2.6/bin/..:/Users/a6/Applications/hbase-1.2.6/bin/../lib/activation-1.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/aopalliance-1.0.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/apacheds-i18n-2.0.0-M15.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/apacheds-kerberos-codec-2.0.0-M15.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/api-asn1-api-1.0.0-M20.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/api-util-1.0.0-M20.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/asm-3.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/avro-1.7.4.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-beanutils-1.7.0.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-beanutils-core-1.8.0.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-cli-1.2.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-codec-1.9.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-collections-3.2.2.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-compress-1.4.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-configuration-1.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-daemon-1.0.13.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-digester-1.8.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-el-1.0.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-httpclient-3.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-io-2.4.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-lang-2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-logging-1.2.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-math-2.2.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-math3-3.1.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-net-3.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/disruptor-3.3.0.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/findbugs-annotations-1.3.9-1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/guava-12.0.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/guice-3.0.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/guice-servlet-3.0.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-annotations-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-auth-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-client-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-common-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-hdfs-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-mapreduce-client-app-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-mapreduce-client-common-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-mapreduce-client-core-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-mapreduce-client-jobclient-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-mapreduce-client-shuffle-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-yarn-api-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-yarn-client-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-yarn-common-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-yarn-server-common-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-annotations-1.2.6-tests.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-annotations-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-client-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-common-1.2.6-tests.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-common-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-examples-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-external-blockcache-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-hadoop-compat-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-hadoop2-compat-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-it-1.2.6-tests.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-it-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-prefix-tree-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-procedure-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-protocol-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-resource-bundle-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-rest-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-server-1.2.6-tests.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-server-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-shell-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-thrift-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/htrace-core-3.1.0-incubating.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/httpclient-4.2.5.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/httpcore-4.4.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jackson-core-asl-1.9.13.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jackson-jaxrs-1.9.13.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jackson-mapper-asl-1.9.13.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jackson-xc-1.9.13.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jamon-runtime-2.4.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jasper-compiler-5.5.23.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jasper-runtime-5.5.23.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/java-xmlbuilder-0.4.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/javax.inject-1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jaxb-api-2.2.2.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jaxb-impl-2.2.3-1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jcodings-1.0.8.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jersey-client-1.9.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jersey-core-1.9.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jersey-guice-1.9.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jersey-json-1.9.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jersey-server-1.9.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jets3t-0.9.0.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jettison-1.3.3.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jetty-6.1.26.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jetty-sslengine-6.1.26.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jetty-util-6.1.26.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/joni-2.1.2.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jruby-complete-1.6.8.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jsch-0.1.42.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jsp-2.1-6.1.14.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jsp-api-2.1-6.1.14.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/junit-4.12.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/leveldbjni-all-1.8.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/libthrift-0.9.3.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/log4j-1.2.17.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/metrics-core-2.2.0.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/netty-all-4.0.23.Final.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/paranamer-2.3.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/protobuf-java-2.5.0.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/servlet-api-2.5-6.1.14.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/servlet-api-2.5.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/slf4j-api-1.7.7.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/slf4j-log4j12-1.7.5.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/snappy-java-1.0.4.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/spymemcached-2.11.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/xmlenc-0.52.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/xz-1.0.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/zookeeper-3.4.6.jar:/Users/a6/Applications/hadoop-2.6.5/etc/hadoop:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jaxb-impl-2.2.3-1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jsr305-1.3.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/activation-1.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/curator-recipes-2.6.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-configuration-1.6.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-beanutils-1.7.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/xz-1.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/junit-4.11.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-httpclient-3.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/stax-api-1.0-2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/apacheds-i18n-2.0.0-M15.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/httpclient-4.2.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jaxb-api-2.2.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/mockito-all-1.8.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jackson-jaxrs-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-logging-1.1.3.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jasper-compiler-5.5.23.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/slf4j-api-1.7.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jersey-json-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jasper-runtime-5.5.23.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/avro-1.7.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/log4j-1.2.17.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-cli-1.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-digester-1.8.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/servlet-api-2.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/hadoop-annotations-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/protobuf-java-2.5.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/hadoop-auth-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/xmlenc-0.52.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jackson-xc-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jetty-util-6.1.26.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/guava-11.0.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-compress-1.4.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/htrace-core-3.0.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-io-2.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jackson-core-asl-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jersey-core-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jsp-api-2.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-codec-1.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/netty-3.6.2.Final.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/curator-framework-2.6.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jetty-6.1.26.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-beanutils-core-1.8.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jersey-server-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/java-xmlbuilder-0.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/curator-client-2.6.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/paranamer-2.3.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/zookeeper-3.4.6.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-collections-3.2.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jettison-1.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/asm-3.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/api-asn1-api-1.0.0-M20.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/apacheds-kerberos-codec-2.0.0-M15.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/hamcrest-core-1.3.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/api-util-1.0.0-M20.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-net-3.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/gson-2.2.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jets3t-0.9.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-lang-2.6.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jsch-0.1.42.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-el-1.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/snappy-java-1.0.4.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jackson-mapper-asl-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-math3-3.1.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/httpcore-4.2.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/hadoop-common-2.6.5-tests.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/hadoop-nfs-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/hadoop-common-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/jsr305-1.3.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/xercesImpl-2.9.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/commons-logging-1.1.3.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/jasper-runtime-5.5.23.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/log4j-1.2.17.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/commons-cli-1.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/xml-apis-1.3.04.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/servlet-api-2.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/protobuf-java-2.5.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/xmlenc-0.52.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/jetty-util-6.1.26.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/guava-11.0.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/htrace-core-3.0.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/commons-io-2.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/jackson-core-asl-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/jersey-core-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/jsp-api-2.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/commons-codec-1.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/netty-3.6.2.Final.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/jetty-6.1.26.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/jersey-server-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/asm-3.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/commons-lang-2.6.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/commons-el-1.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/jackson-mapper-asl-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/commons-daemon-1.0.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/hadoop-hdfs-2.6.5-tests.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/hadoop-hdfs-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/hadoop-hdfs-nfs-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jaxb-impl-2.2.3-1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jsr305-1.3.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/activation-1.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/aopalliance-1.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/guice-servlet-3.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/xz-1.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/commons-httpclient-3.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/stax-api-1.0-2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jline-0.9.94.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jaxb-api-2.2.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jackson-jaxrs-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/commons-logging-1.1.3.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jersey-json-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/log4j-1.2.17.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/commons-cli-1.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/servlet-api-2.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/protobuf-java-2.5.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jackson-xc-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jetty-util-6.1.26.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/guava-11.0.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/commons-compress-1.4.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/commons-io-2.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jackson-core-asl-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jersey-core-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/commons-codec-1.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/netty-3.6.2.Final.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jetty-6.1.26.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jersey-server-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/guice-3.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jersey-client-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jersey-guice-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/zookeeper-3.4.6.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/commons-collections-3.2.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jettison-1.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/asm-3.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/commons-lang-2.6.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/leveldbjni-all-1.8.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jackson-mapper-asl-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/javax.inject-1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-common-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-server-web-proxy-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-server-nodemanager-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-server-resourcemanager-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-server-common-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-client-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-registry-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-applications-distributedshell-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-server-applicationhistoryservice-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-applications-unmanaged-am-launcher-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-server-tests-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-api-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/aopalliance-1.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/guice-servlet-3.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/xz-1.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/junit-4.11.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/avro-1.7.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/log4j-1.2.17.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/hadoop-annotations-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/protobuf-java-2.5.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/commons-compress-1.4.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/commons-io-2.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/jackson-core-asl-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/jersey-core-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/netty-3.6.2.Final.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/jersey-server-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/guice-3.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/jersey-guice-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/paranamer-2.3.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/asm-3.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/hamcrest-core-1.3.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/leveldbjni-all-1.8.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/snappy-java-1.0.4.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/jackson-mapper-asl-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/javax.inject-1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-client-common-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-client-shuffle-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-client-app-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.6.5-tests.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-client-hs-plugins-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-client-hs-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/contrib/capacity-scheduler/*.jar
2018-05-15 17:31:23,336 INFO [main] zookeeper.ZooKeeper: Client environment:java.library.path=/Users/a6/Applications/hadoop-2.6.5/lib/native
2018-05-15 17:31:23,336 INFO [main] zookeeper.ZooKeeper: Client environment:java.io.tmpdir=/var/folders/bm/dccwv2v97y75hdshqnh1bbpr0000gn/T/
2018-05-15 17:31:23,336 INFO [main] zookeeper.ZooKeeper: Client environment:java.compiler=
2018-05-15 17:31:23,336 INFO [main] zookeeper.ZooKeeper: Client environment:os.name=Mac OS X
2018-05-15 17:31:23,336 INFO [main] zookeeper.ZooKeeper: Client environment:os.arch=x86_64
2018-05-15 17:31:23,336 INFO [main] zookeeper.ZooKeeper: Client environment:os.version=10.13.2
2018-05-15 17:31:23,337 INFO [main] zookeeper.ZooKeeper: Client environment:user.name=a6
2018-05-15 17:31:23,337 INFO [main] zookeeper.ZooKeeper: Client environment:user.home=/Users/a6
2018-05-15 17:31:23,337 INFO [main] zookeeper.ZooKeeper: Client environment:user.dir=/Users/a6/Applications/hbase-1.2.6/bin
2018-05-15 17:31:23,338 INFO [main] zookeeper.ZooKeeper: Initiating client connection, connectString=localhost:2182 sessionTimeout=90000 watcher=hconnection-0x5ed731d00x0, quorum=localhost:2182, baseZNode=/hbase
2018-05-15 17:31:23,360 INFO [main-SendThread(localhost:2182)] zookeeper.ClientCnxn: Opening socket connection to server localhost/127.0.0.1:2182. Will not attempt to authenticate using SASL (unknown error)
2018-05-15 17:31:23,361 INFO [main-SendThread(localhost:2182)] zookeeper.ClientCnxn: Socket connection established to localhost/127.0.0.1:2182, initiating session
2018-05-15 17:31:23,371 INFO [main-SendThread(localhost:2182)] zookeeper.ClientCnxn: Session establishment complete on server localhost/127.0.0.1:2182, sessionid = 0x163615ea3e6000c, negotiated timeout = 40000
2018-05-15 17:31:23,455 INFO [main] util.RegionSizeCalculator: Calculating region sizes for table "emp".
2018-05-15 17:31:23,834 INFO [main] client.ConnectionManager$HConnectionImplementation: Closing master protocol: MasterService
2018-05-15 17:31:23,834 INFO [main] client.ConnectionManager$HConnectionImplementation: Closing zookeeper sessionid=0x163615ea3e6000c
2018-05-15 17:31:23,837 INFO [main] zookeeper.ZooKeeper: Session: 0x163615ea3e6000c closed
2018-05-15 17:31:23,837 INFO [main-EventThread] zookeeper.ClientCnxn: EventThread shut down
2018-05-15 17:31:23,933 INFO [main] mapreduce.JobSubmitter: number of splits:1
2018-05-15 17:31:23,955 INFO [main] Configuration.deprecation: io.bytes.per.checksum is deprecated. Instead, use dfs.bytes-per-checksum
2018-05-15 17:31:24,115 INFO [main] mapreduce.JobSubmitter: Submitting tokens for job: job_1526346976211_0003
2018-05-15 17:31:24,513 INFO [main] impl.YarnClientImpl: Submitted application application_1526346976211_0003
2018-05-15 17:31:24,561 INFO [main] mapreduce.Job: The url to track the job: http://localhost:8088/proxy/application_1526346976211_0003/
2018-05-15 17:31:24,562 INFO [main] mapreduce.Job: Running job: job_1526346976211_0003
2018-05-15 17:31:36,842 INFO [main] mapreduce.Job: Job job_1526346976211_0003 running in uber mode : false
2018-05-15 17:31:36,844 INFO [main] mapreduce.Job: map 0% reduce 0%
2018-05-15 17:31:43,965 INFO [main] mapreduce.Job: map 100% reduce 0%
2018-05-15 17:31:44,980 INFO [main] mapreduce.Job: Job job_1526346976211_0003 completed successfully
2018-05-15 17:31:45,120 INFO [main] mapreduce.Job: Counters: 43
File System Counters
FILE: Number of bytes read=0
FILE: Number of bytes written=139577
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=64
HDFS: Number of bytes written=323
HDFS: Number of read operations=4
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=4842
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=4842
Total vcore-seconds taken by all map tasks=4842
Total megabyte-seconds taken by all map tasks=4958208
Map-Reduce Framework
Map input records=1
Map output records=1
Input split bytes=64
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=73
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=111149056
HBase Counters
BYTES_IN_REMOTE_RESULTS=0
BYTES_IN_RESULTS=210
MILLIS_BETWEEN_NEXTS=517
NOT_SERVING_REGION_EXCEPTION=0
NUM_SCANNER_RESTARTS=0
NUM_SCAN_RESULTS_STALE=0
REGIONS_SCANNED=1
REMOTE_RPC_CALLS=0
REMOTE_RPC_RETRIES=0
ROWS_FILTERED=0
ROWS_SCANNED=1
RPC_CALLS=3
RPC_RETRIES=0
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=323
查看生成的目录并查看导出到hdfs上的二进制数据
localhost:bin a6$ hadoop dfs -ls /hbase/emp_bak

DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

18/05/15 17:34:29 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 2 items
-rw-r--r-- 1 a6 supergroup 0 2018-05-15 17:31 /hbase/emp_bak/_SUCCESS
-rw-r--r-- 1 a6 supergroup 323 2018-05-15 17:31 /hbase/emp_bak/part-m-00000
localhost:bin a6$ hadoop dfs -cat /hbase/emp_bak/*
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

18/05/15 17:34:37 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
SEQ1org.apache.hadoop.hbase.io.ImmutableBytesWritable%org.apache.hadoop.hbase.client.ResultI~
?F?;?H??[$???1?
,
personal datacity ????,(2 hyderabad

personal dataname ????,(2raju
5
1professional data
designation ????,(2manager
.
1professional datasalary ????,(250000 )

将hbase数据备份到本地文件
localhost:bin a6$ hbase org.apache.hadoop.hbase.mapreduce.Export emp file:///Users/a6/Applications/experiment_data/hbase_data/bak
4)、创建备份到的目标hbase表
create ‘emp_bak‘,‘personal data‘,‘professional data‘

5)、将hdfs上的数据导入到备份目标表中

localhost:bin a6$ hbase org.apache.hadoop.hbase.mapreduce.Driver import emp_bak /hbase/emp_bak/*

SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
2018-05-15 17:37:07,154 WARN [main] util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2018-05-15 17:37:08,045 INFO [main] client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
2018-05-15 17:37:09,852 INFO [main] input.FileInputFormat: Total input paths to process : 1
2018-05-15 17:37:09,907 INFO [main] mapreduce.JobSubmitter: number of splits:1
2018-05-15 17:37:10,026 INFO [main] mapreduce.JobSubmitter: Submitting tokens for job: job_1526346976211_0005
2018-05-15 17:37:10,384 INFO [main] impl.YarnClientImpl: Submitted application application_1526346976211_0005
2018-05-15 17:37:10,413 INFO [main] mapreduce.Job: The url to track the job: http://localhost:8088/proxy/application_1526346976211_0005/
2018-05-15 17:37:10,413 INFO [main] mapreduce.Job: Running job: job_1526346976211_0005
2018-05-15 17:37:18,621 INFO [main] mapreduce.Job: Job job_1526346976211_0005 running in uber mode : false
2018-05-15 17:37:18,622 INFO [main] mapreduce.Job: map 0% reduce 0%
2018-05-15 17:37:25,705 INFO [main] mapreduce.Job: map 100% reduce 0%
2018-05-15 17:37:25,716 INFO [main] mapreduce.Job: Job job_1526346976211_0005 completed successfully
2018-05-15 17:37:25,832 INFO [main] mapreduce.Job: Counters: 30
File System Counters
FILE: Number of bytes read=0
FILE: Number of bytes written=139121
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=436
HDFS: Number of bytes written=0
HDFS: Number of read operations=3
HDFS: Number of large read operations=0
HDFS: Number of write operations=0
Job Counters
Launched map tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=4804
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=4804
Total vcore-seconds taken by all map tasks=4804
Total megabyte-seconds taken by all map tasks=4919296
Map-Reduce Framework
Map input records=1
Map output records=1
Input split bytes=113
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=86
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=112197632
File Input Format Counters
Bytes Read=323
File Output Format Counters
Bytes Written=0
2018-05-15 17:37:25,842 INFO [main] mapreduce.Job: Running job: job_1526346976211_0005
2018-05-15 17:37:25,848 INFO [main] mapreduce.Job: Job job_1526346976211_0005 running in uber mode : false
2018-05-15 17:37:25,849 INFO [main] mapreduce.Job: map 100% reduce 0%
2018-05-15 17:37:25,855 INFO [main] mapreduce.Job: Job job_1526346976211_0005 completed successfully
2018-05-15 17:37:25,862 INFO [main] mapreduce.Job: Counters: 30
File System Counters
FILE: Number of bytes read=0
FILE: Number of bytes written=139121
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=436
HDFS: Number of bytes written=0
HDFS: Number of read operations=3
HDFS: Number of large read operations=0
HDFS: Number of write operations=0
Job Counters
Launched map tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=4804
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=4804
Total vcore-seconds taken by all map tasks=4804
Total megabyte-seconds taken by all map tasks=4919296
Map-Reduce Framework
Map input records=1
Map output records=1
Input split bytes=113
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=86
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=112197632
File Input Format Counters
Bytes Read=323
File Output Format Counters
Bytes Written=0

这样基本就完成了hbase表中的数据我们可以转化为mapreduce任务进程开始导出导入。当然也可以这么备份的。

6)、最后我们仔细看一下hbase导出和导入的关键命令参数

localhost:bin a6$ hbase org.apache.hadoop.hbase.mapreduce.Export

ERROR: Wrong number of arguments: 0
Usage: Export [-D ]* [ [ []] [^[regex pattern] or [Prefix] to filter]]

Note: -D properties will be applied to the conf used.
For example:
-D mapreduce.output.fileoutputformat.compress=true
-D mapreduce.output.fileoutputformat.compress.codec=org.apache.hadoop.io.compress.GzipCodec
-D mapreduce.output.fileoutputformat.compress.type=BLOCK
Additionally, the following SCAN properties can be specified
to control/limit what is exported..
-D hbase.mapreduce.scan.column.family=
-D hbase.mapreduce.include.deleted.rows=true
-D hbase.mapreduce.scan.row.start=
-D hbase.mapreduce.scan.row.stop=
For performance consider the following properties:
-Dhbase.client.scanner.caching=100
-Dmapreduce.map.speculative=false
-Dmapreduce.reduce.speculative=false
For tables with very wide rows consider setting the batch size as below:
-Dhbase.export.scanner.batch=10
localhost:bin a6$ hbase org.apache.hadoop.hbase.mapreduce.Driver import
ERROR: Wrong number of arguments: 0
Usage: Import [options]
By default Import will load data directly into HBase. To instead generate
HFiles of data to prepare for a bulk data load, pass the option:
-Dimport.bulk.output=/path/for/output
To apply a generic org.apache.hadoop.hbase.filter.Filter to the input, use
-Dimport.filter.class=
-Dimport.filter.args= NOTE: The filter will be applied BEFORE doing key renames via the HBASE_IMPORTER_RENAME_CFS property. Futher, filters will only use the Filter#filterRowKey(byte[] buffer, int offset, int length) method to identify whether the current row needs to be ignored completely for processing and Filter#filterKeyValue(KeyValue) method to determine if the KeyValue should be added; Filter.ReturnCode#INCLUDE and #INCLUDE_AND_NEXT_COL will be considered as including the KeyValue.
To import data exported from HBase 0.94, use
-Dhbase.import.version=0.94
For performance consider the following options:
-Dmapreduce.map.speculative=false
-Dmapreduce.reduce.speculative=false
-Dimport.wal.durability=

二、基于Hbase snapshot数据快速备份方法

1.Snapshot备份的优点是什么?

HBase以往数据的备份基于distcp或者copyTable等工具,这些备份机制或多或少对当前的online数据读写存在一定的影响,Snapshot提供了一种快速的数据备份方式,无需进行数据copy。
参见下图
分享图片
2.HBase数据的备份的方式有几种?Snapshot包括在线和离线的,他们之间有什么区别?

Snapshot包括在线和离线的
(1)离线方式是disabletable,由HBase Master遍历HDFS中的table metadata和hfiles,建立对他们的引用。
(2)在线方式是enabletable,由Master指示region server进行snapshot操作,在此过程中,master和regionserver之间类似两阶段commit的snapshot操作。
分享图片

HFile是不可变的,只能append和delete, region的split和compact,都不会对snapshot引用的文件做删除(除非删除snapshot文件),这些文件会归档到archive目录下,进而需要重新调整snapshot文件中相关hfile的引用位置关系。

分享图片
基于snapshot文件,可以做clone一个新表,restore,export到另外一个集群中操作;其中clone生成的新表只是增加元数据,相关的数据文件还是复用snapshot指定的数据文件
参见clone新表操作示意图:

分享图片

3.snashot的shell的命令都由哪些?如何删除、查看快照?如何导出到另外一个集群?

snashot相关的操作命令如下:

1)创建快照(查看快照->查看快照snapshot命令相关参数->创建快照—>查看快照)

hbase(main):002:0> list_snapshots

SNAPSHOT TABLE + CREATION TIME
0 row(s) in 0.0290 seconds

=> []
hbase(main):003:0> snapshot

ERROR: wrong number of arguments (0 for 2)

Here is some help for this command:
Take a snapshot of specified table. Examples:

hbase> snapshot ‘sourceTable‘, ‘snapshotName‘
hbase> snapshot ‘namespace:sourceTable‘, ‘snapshotName‘, {SKIP_FLUSH => true}


hbase(main):004:0> snapshot ‘emp‘,‘emp_snapshot‘
0 row(s) in 0.3730 seconds

hbase(main):005:0> list_snapshots
SNAPSHOT TABLE + CREATION TIME
emp_snapshot emp (Wed May 16 09:44:53 +0800 2018)
1 row(s) in 0.0190 seconds

=> ["emp_snapshot"]

2)删除并查看快照

hbase(main):006:0> delete_snapshot ‘emp_snapshot‘

0 row(s) in 0.0390 seconds

hbase(main):007:0> list_snapshots
SNAPSHOT TABLE + CREATION TIME
0 row(s) in 0.0040 seconds

=> []

3)基于快照,clone一个新表

hbase(main):011:0> clone_snapshot ‘emp_snapshot‘,‘new_emp‘

0 row(s) in 0.5290 seconds

hbase(main):013:0> scan ‘new_emp‘
ROW COLUMN+CELL
1 column=personal data:city, timestamp=1526269334560, value=hyderabad
1 column=personal data:name, timestamp=1526269326929, value=raju
1 column=professional data:designation, timestamp=1526269345044, value=manager
1 column=professional data:salary, timestamp=1526269352605, value=50000
1 row(s) in 0.1050 seconds

hbase(main):014:0> desc ‘new_emp‘
Table new_emp is ENABLED
new_emp
COLUMN FAMILIES DESCRIPTION
{NAME => ‘personal data‘, BLOOMFILTER => ‘ROW‘, VERSIONS => ‘1‘, IN_MEMORY => ‘false‘, KEEP_DELETED_CELLS => ‘FALSE‘, DATA_BLOCK_ENCODING => ‘NONE‘, TTL => ‘FOREVER‘, COMPRESSION => ‘NONE‘, MIN_VERSIONS => ‘0‘, BLOCKCACHE => ‘true‘, BLOCKSIZE => ‘65536‘, REPLICATION_SCOPE
=> ‘0‘}
{NAME => ‘professional data‘, BLOOMFILTER => ‘ROW‘, VERSIONS => ‘1‘, IN_MEMORY => ‘false‘, KEEP_DELETED_CELLS => ‘FALSE‘, DATA_BLOCK_ENCODING => ‘NONE‘, TTL => ‘FOREVER‘, COMPRESSION => ‘NONE‘, MIN_VERSIONS => ‘0‘, BLOCKCACHE => ‘true‘, BLOCKSIZE => ‘65536‘, REPLICATION_S
COPE => ‘0‘}
2 row(s) in 0.0370 seconds

4)基于快照恢复表(原hbase表emp需要删除)

hbase(main):027:0>gt; list

TABLE
new_emp
t1
test
3 row(s) in 0.0130 seconds

=> ["new_emp", "t1", "test"]
hbase(main):028:0> list_snapshots
SNAPSHOT TABLE + CREATION TIME
emp_snapshot emp (Wed May 16 09:45:25 +0800 2018)
1 row(s) in 0.0130 seconds

=> ["emp_snapshot"]
hbase(main):029:0> restore_snapshot ‘emp_snapshot‘
0 row(s) in 0.3700 seconds

hbase(main):030:0> list
TABLE
emp
new_emp
t1
test
4 row(s) in 0.0240 seconds

=> ["emp", "new_emp", "t1", "test"]

5)基于快照将数据导出到另外一个集群中的本地文件中

利用mapreduce job将emp_snapshot这个snapshot 导出到本地目录/Users/a6/Applications/experiment_data/hbase_data中的bak_emp_snapshot(不存在)

localhost:bin a6$ hbase org.apache.hadoop.hbase.snapshot.ExportSnapshot -snapshot ‘emp_snapshot‘ -copy-to file:///Users/a6/Applications/experiment_data/hbase_data/bak_emp_snapshot -mappers 16

SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
2018-05-16 10:21:47,310 WARN [main] util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2018-05-16 10:21:47,633 INFO [main] snapshot.ExportSnapshot: Copy Snapshot Manifest
2018-05-16 10:21:47,922 INFO [main] client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
2018-05-16 10:21:50,233 INFO [main] snapshot.ExportSnapshot: Loading Snapshot ‘emp_snapshot‘ hfile list
2018-05-16 10:21:50,547 INFO [main] mapreduce.JobSubmitter: number of splits:2
2018-05-16 10:21:50,732 INFO [main] mapreduce.JobSubmitter: Submitting tokens for job: job_1526434993990_0001
2018-05-16 10:21:51,182 INFO [main] impl.YarnClientImpl: Submitted application application_1526434993990_0001
2018-05-16 10:21:51,268 INFO [main] mapreduce.Job: The url to track the job: http://localhost:8088/proxy/application_1526434993990_0001/
2018-05-16 10:21:51,269 INFO [main] mapreduce.Job: Running job: job_1526434993990_0001
2018-05-16 10:22:02,425 INFO [main] mapreduce.Job: Job job_1526434993990_0001 running in uber mode : false
2018-05-16 10:22:02,427 INFO [main] mapreduce.Job: map 0% reduce 0%
2018-05-16 10:22:09,722 INFO [main] mapreduce.Job: map 50% reduce 0%
2018-05-16 10:22:10,731 INFO [main] mapreduce.Job: map 100% reduce 0%
2018-05-16 10:22:10,740 INFO [main] mapreduce.Job: Job job_1526434993990_0001 completed successfully
2018-05-16 10:22:10,848 INFO [main] mapreduce.Job: Counters: 37
File System Counters
FILE: Number of bytes read=9985
FILE: Number of bytes written=291407
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=408
HDFS: Number of bytes written=0
HDFS: Number of read operations=2
HDFS: Number of large read operations=0
HDFS: Number of write operations=0
Job Counters
Launched map tasks=2
Other local map tasks=2
Total time spent by all maps in occupied slots (ms)=9683
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=9683
Total vcore-seconds taken by all map tasks=9683
Total megabyte-seconds taken by all map tasks=9915392
Map-Reduce Framework
Map input records=2
Map output records=0
Input split bytes=408
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=155
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=212860928
org.apache.hadoop.hbase.snapshot.ExportSnapshot$Counter
BYTES_COPIED=9985
BYTES_EXPECTED=9985
BYTES_SKIPPED=0
COPY_FAILED=0
FILES_COPIED=2
FILES_SKIPPED=0
MISSING_FILES=0
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=0
2018-05-16 10:22:10,851 INFO [main] snapshot.ExportSnapshot: Finalize the Snapshot Export
2018-05-16 10:22:10,852 INFO [main] snapshot.ExportSnapshot: Verify snapshot integrity
2018-05-16 10:22:10,875 INFO [main] snapshot.ExportSnapshot: Export Completed: emp_snapshot

查看快照备份到本地的备份文件结构:

localhost:hbase_data a6$ ls  -R

bak_emp_snapshot

./bak_emp_snapshot:
archive

./bak_emp_snapshot/archive:
data

./bak_emp_snapshot/archive/data:
default

./bak_emp_snapshot/archive/data/default:
emp

./bak_emp_snapshot/archive/data/default/emp:
f8d3b4ead1603d0e9350dc426fce7fd7

./bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7:
personal data professional data

./bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/personal data:
9111be6b05e746ddb8507e8daf5a4eb0

./bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/professional data:
c264d32ef37b4b6f9953b388f007d059
localhost:hbase_data a6$

6)基于快照将数据导出到另外一个集群中的hdfs上

localhost:bin a6$ hbase org.apache.hadoop.hbase.snapshot.ExportSnapshot -snapshot ‘emp_snapshot‘ -copy-to hdfs:///hbase/bak_emp_snapshot -mappers 16

SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
2018-05-16 10:29:02,343 WARN [main] util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2018-05-16 10:29:03,034 INFO [main] snapshot.ExportSnapshot: Copy Snapshot Manifest
2018-05-16 10:29:03,423 INFO [main] client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
2018-05-16 10:29:04,368 INFO [main] snapshot.ExportSnapshot: Loading Snapshot ‘emp_snapshot‘ hfile list
2018-05-16 10:29:04,730 INFO [main] mapreduce.JobSubmitter: number of splits:2
2018-05-16 10:29:04,863 INFO [main] mapreduce.JobSubmitter: Submitting tokens for job: job_1526434993990_0002
2018-05-16 10:29:05,129 INFO [main] impl.YarnClientImpl: Submitted application application_1526434993990_0002
2018-05-16 10:29:05,160 INFO [main] mapreduce.Job: The url to track the job: http://localhost:8088/proxy/application_1526434993990_0002/
2018-05-16 10:29:05,160 INFO [main] mapreduce.Job: Running job: job_1526434993990_0002
2018-05-16 10:29:13,260 INFO [main] mapreduce.Job: Job job_1526434993990_0002 running in uber mode : false
2018-05-16 10:29:13,262 INFO [main] mapreduce.Job: map 0% reduce 0%
2018-05-16 10:29:18,354 INFO [main] mapreduce.Job: Task Id : attempt_1526434993990_0002_m_000000_0, Status : FAILED
Error: Java heap space
2018-05-16 10:29:19,377 INFO [main] mapreduce.Job: Task Id : attempt_1526434993990_0002_m_000001_0, Status : FAILED
Error: Java heap space
2018-05-16 10:29:25,432 INFO [main] mapreduce.Job: map 50% reduce 0%
2018-05-16 10:29:26,438 INFO [main] mapreduce.Job: map 100% reduce 0%
2018-05-16 10:29:26,450 INFO [main] mapreduce.Job: Job job_1526434993990_0002 completed successfully
2018-05-16 10:29:26,554 INFO [main] mapreduce.Job: Counters: 38
File System Counters
FILE: Number of bytes read=9985
FILE: Number of bytes written=281240
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=408
HDFS: Number of bytes written=9985
HDFS: Number of read operations=8
HDFS: Number of large read operations=0
HDFS: Number of write operations=8
Job Counters
Failed map tasks=2
Launched map tasks=4
Other local map tasks=4
Total time spent by all maps in occupied slots (ms)=17871
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=17871
Total vcore-seconds taken by all map tasks=17871
Total megabyte-seconds taken by all map tasks=18299904
Map-Reduce Framework
Map input records=2
Map output records=0
Input split bytes=408
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=235
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=257949696
org.apache.hadoop.hbase.snapshot.ExportSnapshot$Counter
BYTES_COPIED=9985
BYTES_EXPECTED=9985
BYTES_SKIPPED=0
COPY_FAILED=0
FILES_COPIED=2
FILES_SKIPPED=0
MISSING_FILES=0
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=0
2018-05-16 10:29:26,556 INFO [main] snapshot.ExportSnapshot: Finalize the Snapshot Export
2018-05-16 10:29:26,563 INFO [main] snapshot.ExportSnapshot: Verify snapshot integrity
2018-05-16 10:29:26,647 INFO [main] snapshot.ExportSnapshot: Export Completed: emp_snapshot

检验并查看hdfs文件:

localhost:hbase_data a6$ hadoop dfs -ls /hbase/

DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

18/05/16 10:29:34 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 2 items
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot
drwxr-xr-x - a6 supergroup 0 2018-05-15 17:31 /hbase/emp_bak
localhost:hbase_data a6$ hadoop dfs -ls /hbase/bak_emp_snapshot
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

18/05/16 10:29:45 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 2 items
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive
localhost:hbase_data a6$

查看生成快照文件的目录结构及其文件大小
localhost:hbase_data a6$ hadoop dfs -ls -R  /hbase/bak_emp_snapshot

DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

18/05/16 10:34:15 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot/.tmp
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot/emp_snapshot
-rw-r--r-- 1 a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot/emp_snapshot/.inprogress
-rw-r--r-- 1 a6 supergroup 30 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot/emp_snapshot/.snapshotinfo
-rw-r--r-- 1 a6 supergroup 703 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot/emp_snapshot/data.manifest
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/personal data
-rw-rw-rw- 1 a6 staff 4976 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/personal data/9111be6b05e746ddb8507e8daf5a4eb0
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/professional data
-rw-rw-rw- 1 a6 staff 5009 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/professional data/c264d32ef37b4b6f9953b388f007d059
localhost:hbase_data a6$
参考网址: https://blog.csdn.net/yangbutao/article/details/12911487

其他备份方法:https://www.cnblogs.com/ios123/p/6399699.html

这样就可以了,且数据将会保存在hdfs中。

通过指定列族和行键范围,可以只导出部分数据,避免export启动的mapreduce任务运行时间过长。也就是可以分多次导出数据。

3)、将hbase表emp的数据导出到hdfs的路径/hbase/emp_bak上面

查看生成的目录并查看导出到hdfs上的二进制数据

localhost:bin a6$ hadoop dfs -ls /hbase/emp_bak

DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

18/05/15 17:34:29 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 2 items
-rw-r--r-- 1 a6 supergroup 0 2018-05-15 17:31 /hbase/emp_bak/_SUCCESS
-rw-r--r-- 1 a6 supergroup 323 2018-05-15 17:31 /hbase/emp_bak/part-m-00000
localhost:bin a6$ hadoop dfs -cat /hbase/emp_bak/*
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

18/05/15 17:34:37 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
SEQ1org.apache.hadoop.hbase.io.ImmutableBytesWritable%org.apache.hadoop.hbase.client.ResultI~
?F?;?H??[$???1?
,
personal datacity ????,(2 hyderabad

personal dataname ????,(2raju
5
1professional data
designation ????,(2manager
.
1professional datasalary ????,(250000 )

将hbase数据备份到本地文件
localhost:bin a6$ hbase org.apache.hadoop.hbase.mapreduce.Export emp file:///Users/a6/Applications/experiment_data/hbase_data/bak
4)、创建备份到的目标hbase表
create ‘emp_bak‘,‘personal data‘,‘professional data‘

5)、将hdfs上的数据导入到备份目标表中

localhost:bin a6$ hbase org.apache.hadoop.hbase.mapreduce.Driver import emp_bak /hbase/emp_bak/*

SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
2018-05-15 17:37:07,154 WARN [main] util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2018-05-15 17:37:08,045 INFO [main] client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
2018-05-15 17:37:09,852 INFO [main] input.FileInputFormat: Total input paths to process : 1
2018-05-15 17:37:09,907 INFO [main] mapreduce.JobSubmitter: number of splits:1
2018-05-15 17:37:10,026 INFO [main] mapreduce.JobSubmitter: Submitting tokens for job: job_1526346976211_0005
2018-05-15 17:37:10,384 INFO [main] impl.YarnClientImpl: Submitted application application_1526346976211_0005
2018-05-15 17:37:10,413 INFO [main] mapreduce.Job: The url to track the job: http://localhost:8088/proxy/application_1526346976211_0005/
2018-05-15 17:37:10,413 INFO [main] mapreduce.Job: Running job: job_1526346976211_0005
2018-05-15 17:37:18,621 INFO [main] mapreduce.Job: Job job_1526346976211_0005 running in uber mode : false
2018-05-15 17:37:18,622 INFO [main] mapreduce.Job: map 0% reduce 0%
2018-05-15 17:37:25,705 INFO [main] mapreduce.Job: map 100% reduce 0%
2018-05-15 17:37:25,716 INFO [main] mapreduce.Job: Job job_1526346976211_0005 completed successfully
2018-05-15 17:37:25,832 INFO [main] mapreduce.Job: Counters: 30
File System Counters
FILE: Number of bytes read=0
FILE: Number of bytes written=139121
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=436
HDFS: Number of bytes written=0
HDFS: Number of read operations=3
HDFS: Number of large read operations=0
HDFS: Number of write operations=0
Job Counters
Launched map tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=4804
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=4804
Total vcore-seconds taken by all map tasks=4804
Total megabyte-seconds taken by all map tasks=4919296
Map-Reduce Framework
Map input records=1
Map output records=1
Input split bytes=113
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=86
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=112197632
File Input Format Counters
Bytes Read=323
File Output Format Counters
Bytes Written=0
2018-05-15 17:37:25,842 INFO [main] mapreduce.Job: Running job: job_1526346976211_0005
2018-05-15 17:37:25,848 INFO [main] mapreduce.Job: Job job_1526346976211_0005 running in uber mode : false
2018-05-15 17:37:25,849 INFO [main] mapreduce.Job: map 100% reduce 0%
2018-05-15 17:37:25,855 INFO [main] mapreduce.Job: Job job_1526346976211_0005 completed successfully
2018-05-15 17:37:25,862 INFO [main] mapreduce.Job: Counters: 30
File System Counters
FILE: Number of bytes read=0
FILE: Number of bytes written=139121
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=436
HDFS: Number of bytes written=0
HDFS: Number of read operations=3
HDFS: Number of large read operations=0
HDFS: Number of write operations=0
Job Counters
Launched map tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=4804
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=4804
Total vcore-seconds taken by all map tasks=4804
Total megabyte-seconds taken by all map tasks=4919296
Map-Reduce Framework
Map input records=1
Map output records=1
Input split bytes=113
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=86
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=112197632
File Input Format Counters
Bytes Read=323
File Output Format Counters
Bytes Written=0

这样基本就完成了hbase表中的数据我们可以转化为mapreduce任务进程开始导出导入。当然也可以这么备份的。

6)、最后我们仔细看一下hbase导出和导入的关键命令参数

localhost:bin a6$ hbase org.apache.hadoop.hbase.mapreduce.Export

ERROR: Wrong number of arguments: 0
Usage: Export [-D ]* [ [ []] [^[regex pattern] or [Prefix] to filter]]

Note: -D properties will be applied to the conf used.
For example:
-D mapreduce.output.fileoutputformat.compress=true
-D mapreduce.output.fileoutputformat.compress.codec=org.apache.hadoop.io.compress.GzipCodec
-D mapreduce.output.fileoutputformat.compress.type=BLOCK
Additionally, the following SCAN properties can be specified
to control/limit what is exported..
-D hbase.mapreduce.scan.column.family=
-D hbase.mapreduce.include.deleted.rows=true
-D hbase.mapreduce.scan.row.start=
-D hbase.mapreduce.scan.row.stop=
For performance consider the following properties:
-Dhbase.client.scanner.caching=100
-Dmapreduce.map.speculative=false
-Dmapreduce.reduce.speculative=false
For tables with very wide rows consider setting the batch size as below:
-Dhbase.export.scanner.batch=10
localhost:bin a6$ hbase org.apache.hadoop.hbase.mapreduce.Driver import
ERROR: Wrong number of arguments: 0
Usage: Import [options]
By default Import will load data directly into HBase. To instead generate
HFiles of data to prepare for a bulk data load, pass the option:
-Dimport.bulk.output=/path/for/output
To apply a generic org.apache.hadoop.hbase.filter.Filter to the input, use
-Dimport.filter.class=
-Dimport.filter.args= NOTE: The filter will be applied BEFORE doing key renames via the HBASE_IMPORTER_RENAME_CFS property. Futher, filters will only use the Filter#filterRowKey(byte[] buffer, int offset, int length) method to identify whether the current row needs to be ignored completely for processing and Filter#filterKeyValue(KeyValue) method to determine if the KeyValue should be added; Filter.ReturnCode#INCLUDE and #INCLUDE_AND_NEXT_COL will be considered as including the KeyValue.
To import data exported from HBase 0.94, use
-Dhbase.import.version=0.94
For performance consider the following options:
-Dmapreduce.map.speculative=false
-Dmapreduce.reduce.speculative=false
-Dimport.wal.durability=

将hbase数据备份到本地文件

4)、创建备份到的目标hbase表

这样基本就完成了hbase表中的数据我们可以转化为mapreduce任务进程开始导出导入。当然也可以这么备份的。

6)、最后我们仔细看一下hbase导出和导入的关键命令参数

localhost:bin a6$ hbase org.apache.hadoop.hbase.mapreduce.Export

ERROR: Wrong number of arguments: 0
Usage: Export [-D ]* [ [ []] [^[regex pattern] or [Prefix] to filter]]

Note: -D properties will be applied to the conf used.
For example:
-D mapreduce.output.fileoutputformat.compress=true
-D mapreduce.output.fileoutputformat.compress.codec=org.apache.hadoop.io.compress.GzipCodec
-D mapreduce.output.fileoutputformat.compress.type=BLOCK
Additionally, the following SCAN properties can be specified
to control/limit what is exported..
-D hbase.mapreduce.scan.column.family=
-D hbase.mapreduce.include.deleted.rows=true
-D hbase.mapreduce.scan.row.start=
-D hbase.mapreduce.scan.row.stop=
For performance consider the following properties:
-Dhbase.client.scanner.caching=100
-Dmapreduce.map.speculative=false
-Dmapreduce.reduce.speculative=false
For tables with very wide rows consider setting the batch size as below:
-Dhbase.export.scanner.batch=10
localhost:bin a6$ hbase org.apache.hadoop.hbase.mapreduce.Driver import
ERROR: Wrong number of arguments: 0
Usage: Import [options]
By default Import will load data directly into HBase. To instead generate
HFiles of data to prepare for a bulk data load, pass the option:
-Dimport.bulk.output=/path/for/output
To apply a generic org.apache.hadoop.hbase.filter.Filter to the input, use
-Dimport.filter.class=
-Dimport.filter.args= NOTE: The filter will be applied BEFORE doing key renames via the HBASE_IMPORTER_RENAME_CFS property. Futher, filters will only use the Filter#filterRowKey(byte[] buffer, int offset, int length) method to identify whether the current row needs to be ignored completely for processing and Filter#filterKeyValue(KeyValue) method to determine if the KeyValue should be added; Filter.ReturnCode#INCLUDE and #INCLUDE_AND_NEXT_COL will be considered as including the KeyValue.
To import data exported from HBase 0.94, use
-Dhbase.import.version=0.94
For performance consider the following options:
-Dmapreduce.map.speculative=false
-Dmapreduce.reduce.speculative=false
-Dimport.wal.durability=

二、基于Hbase snapshot数据快速备份方法

1.Snapshot备份的优点是什么?

HBase以往数据的备份基于distcp或者copyTable等工具,这些备份机制或多或少对当前的online数据读写存在一定的影响,Snapshot提供了一种快速的数据备份方式,无需进行数据copy。
参见下图
分享图片
2.HBase数据的备份的方式有几种?Snapshot包括在线和离线的,他们之间有什么区别?

Snapshot包括在线和离线的
(1)离线方式是disabletable,由HBase Master遍历HDFS中的table metadata和hfiles,建立对他们的引用。
(2)在线方式是enabletable,由Master指示region server进行snapshot操作,在此过程中,master和regionserver之间类似两阶段commit的snapshot操作。
分享图片

HFile是不可变的,只能append和delete, region的split和compact,都不会对snapshot引用的文件做删除(除非删除snapshot文件),这些文件会归档到archive目录下,进而需要重新调整snapshot文件中相关hfile的引用位置关系。

分享图片
基于snapshot文件,可以做clone一个新表,restore,export到另外一个集群中操作;其中clone生成的新表只是增加元数据,相关的数据文件还是复用snapshot指定的数据文件
参见clone新表操作示意图:

分享图片

3.snashot的shell的命令都由哪些?如何删除、查看快照?如何导出到另外一个集群?

snashot相关的操作命令如下:

1)创建快照(查看快照->查看快照snapshot命令相关参数->创建快照—>查看快照)

hbase(main):002:0> list_snapshots

SNAPSHOT TABLE + CREATION TIME
0 row(s) in 0.0290 seconds

=> []
hbase(main):003:0> snapshot

ERROR: wrong number of arguments (0 for 2)

Here is some help for this command:
Take a snapshot of specified table. Examples:

hbase> snapshot ‘sourceTable‘, ‘snapshotName‘
hbase> snapshot ‘namespace:sourceTable‘, ‘snapshotName‘, {SKIP_FLUSH => true}


hbase(main):004:0> snapshot ‘emp‘,‘emp_snapshot‘
0 row(s) in 0.3730 seconds

hbase(main):005:0> list_snapshots
SNAPSHOT TABLE + CREATION TIME
emp_snapshot emp (Wed May 16 09:44:53 +0800 2018)
1 row(s) in 0.0190 seconds

=> ["emp_snapshot"]

2)删除并查看快照

hbase(main):006:0> delete_snapshot ‘emp_snapshot‘

0 row(s) in 0.0390 seconds

hbase(main):007:0> list_snapshots
SNAPSHOT TABLE + CREATION TIME
0 row(s) in 0.0040 seconds

=> []

3)基于快照,clone一个新表

hbase(main):011:0> clone_snapshot ‘emp_snapshot‘,‘new_emp‘

0 row(s) in 0.5290 seconds

hbase(main):013:0> scan ‘new_emp‘
ROW COLUMN+CELL
1 column=personal data:city, timestamp=1526269334560, value=hyderabad
1 column=personal data:name, timestamp=1526269326929, value=raju
1 column=professional data:designation, timestamp=1526269345044, value=manager
1 column=professional data:salary, timestamp=1526269352605, value=50000
1 row(s) in 0.1050 seconds

hbase(main):014:0> desc ‘new_emp‘
Table new_emp is ENABLED
new_emp
COLUMN FAMILIES DESCRIPTION
{NAME => ‘personal data‘, BLOOMFILTER => ‘ROW‘, VERSIONS => ‘1‘, IN_MEMORY => ‘false‘, KEEP_DELETED_CELLS => ‘FALSE‘, DATA_BLOCK_ENCODING => ‘NONE‘, TTL => ‘FOREVER‘, COMPRESSION => ‘NONE‘, MIN_VERSIONS => ‘0‘, BLOCKCACHE => ‘true‘, BLOCKSIZE => ‘65536‘, REPLICATION_SCOPE
=> ‘0‘}
{NAME => ‘professional data‘, BLOOMFILTER => ‘ROW‘, VERSIONS => ‘1‘, IN_MEMORY => ‘false‘, KEEP_DELETED_CELLS => ‘FALSE‘, DATA_BLOCK_ENCODING => ‘NONE‘, TTL => ‘FOREVER‘, COMPRESSION => ‘NONE‘, MIN_VERSIONS => ‘0‘, BLOCKCACHE => ‘true‘, BLOCKSIZE => ‘65536‘, REPLICATION_S
COPE => ‘0‘}
2 row(s) in 0.0370 seconds

4)基于快照恢复表(原hbase表emp需要删除)

hbase(main):027:0>gt; list

TABLE
new_emp
t1
test
3 row(s) in 0.0130 seconds

=> ["new_emp", "t1", "test"]
hbase(main):028:0> list_snapshots
SNAPSHOT TABLE + CREATION TIME
emp_snapshot emp (Wed May 16 09:45:25 +0800 2018)
1 row(s) in 0.0130 seconds

=> ["emp_snapshot"]
hbase(main):029:0> restore_snapshot ‘emp_snapshot‘
0 row(s) in 0.3700 seconds

hbase(main):030:0> list
TABLE
emp
new_emp
t1
test
4 row(s) in 0.0240 seconds

=> ["emp", "new_emp", "t1", "test"]

5)基于快照将数据导出到另外一个集群中的本地文件中

利用mapreduce job将emp_snapshot这个snapshot 导出到本地目录/Users/a6/Applications/experiment_data/hbase_data中的bak_emp_snapshot(不存在)

localhost:bin a6$ hbase org.apache.hadoop.hbase.snapshot.ExportSnapshot -snapshot ‘emp_snapshot‘ -copy-to file:///Users/a6/Applications/experiment_data/hbase_data/bak_emp_snapshot -mappers 16

SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
2018-05-16 10:21:47,310 WARN [main] util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2018-05-16 10:21:47,633 INFO [main] snapshot.ExportSnapshot: Copy Snapshot Manifest
2018-05-16 10:21:47,922 INFO [main] client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
2018-05-16 10:21:50,233 INFO [main] snapshot.ExportSnapshot: Loading Snapshot ‘emp_snapshot‘ hfile list
2018-05-16 10:21:50,547 INFO [main] mapreduce.JobSubmitter: number of splits:2
2018-05-16 10:21:50,732 INFO [main] mapreduce.JobSubmitter: Submitting tokens for job: job_1526434993990_0001
2018-05-16 10:21:51,182 INFO [main] impl.YarnClientImpl: Submitted application application_1526434993990_0001
2018-05-16 10:21:51,268 INFO [main] mapreduce.Job: The url to track the job: http://localhost:8088/proxy/application_1526434993990_0001/
2018-05-16 10:21:51,269 INFO [main] mapreduce.Job: Running job: job_1526434993990_0001
2018-05-16 10:22:02,425 INFO [main] mapreduce.Job: Job job_1526434993990_0001 running in uber mode : false
2018-05-16 10:22:02,427 INFO [main] mapreduce.Job: map 0% reduce 0%
2018-05-16 10:22:09,722 INFO [main] mapreduce.Job: map 50% reduce 0%
2018-05-16 10:22:10,731 INFO [main] mapreduce.Job: map 100% reduce 0%
2018-05-16 10:22:10,740 INFO [main] mapreduce.Job: Job job_1526434993990_0001 completed successfully
2018-05-16 10:22:10,848 INFO [main] mapreduce.Job: Counters: 37
File System Counters
FILE: Number of bytes read=9985
FILE: Number of bytes written=291407
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=408
HDFS: Number of bytes written=0
HDFS: Number of read operations=2
HDFS: Number of large read operations=0
HDFS: Number of write operations=0
Job Counters
Launched map tasks=2
Other local map tasks=2
Total time spent by all maps in occupied slots (ms)=9683
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=9683
Total vcore-seconds taken by all map tasks=9683
Total megabyte-seconds taken by all map tasks=9915392
Map-Reduce Framework
Map input records=2
Map output records=0
Input split bytes=408
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=155
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=212860928
org.apache.hadoop.hbase.snapshot.ExportSnapshot$Counter
BYTES_COPIED=9985
BYTES_EXPECTED=9985
BYTES_SKIPPED=0
COPY_FAILED=0
FILES_COPIED=2
FILES_SKIPPED=0
MISSING_FILES=0
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=0
2018-05-16 10:22:10,851 INFO [main] snapshot.ExportSnapshot: Finalize the Snapshot Export
2018-05-16 10:22:10,852 INFO [main] snapshot.ExportSnapshot: Verify snapshot integrity
2018-05-16 10:22:10,875 INFO [main] snapshot.ExportSnapshot: Export Completed: emp_snapshot

查看快照备份到本地的备份文件结构:

localhost:hbase_data a6$ ls  -R

bak_emp_snapshot

./bak_emp_snapshot:
archive

./bak_emp_snapshot/archive:
data

./bak_emp_snapshot/archive/data:
default

./bak_emp_snapshot/archive/data/default:
emp

./bak_emp_snapshot/archive/data/default/emp:
f8d3b4ead1603d0e9350dc426fce7fd7

./bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7:
personal data professional data

./bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/personal data:
9111be6b05e746ddb8507e8daf5a4eb0

./bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/professional data:
c264d32ef37b4b6f9953b388f007d059
localhost:hbase_data a6$

6)基于快照将数据导出到另外一个集群中的hdfs上

localhost:bin a6$ hbase org.apache.hadoop.hbase.snapshot.ExportSnapshot -snapshot ‘emp_snapshot‘ -copy-to hdfs:///hbase/bak_emp_snapshot -mappers 16

SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
2018-05-16 10:29:02,343 WARN [main] util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2018-05-16 10:29:03,034 INFO [main] snapshot.ExportSnapshot: Copy Snapshot Manifest
2018-05-16 10:29:03,423 INFO [main] client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
2018-05-16 10:29:04,368 INFO [main] snapshot.ExportSnapshot: Loading Snapshot ‘emp_snapshot‘ hfile list
2018-05-16 10:29:04,730 INFO [main] mapreduce.JobSubmitter: number of splits:2
2018-05-16 10:29:04,863 INFO [main] mapreduce.JobSubmitter: Submitting tokens for job: job_1526434993990_0002
2018-05-16 10:29:05,129 INFO [main] impl.YarnClientImpl: Submitted application application_1526434993990_0002
2018-05-16 10:29:05,160 INFO [main] mapreduce.Job: The url to track the job: http://localhost:8088/proxy/application_1526434993990_0002/
2018-05-16 10:29:05,160 INFO [main] mapreduce.Job: Running job: job_1526434993990_0002
2018-05-16 10:29:13,260 INFO [main] mapreduce.Job: Job job_1526434993990_0002 running in uber mode : false
2018-05-16 10:29:13,262 INFO [main] mapreduce.Job: map 0% reduce 0%
2018-05-16 10:29:18,354 INFO [main] mapreduce.Job: Task Id : attempt_1526434993990_0002_m_000000_0, Status : FAILED
Error: Java heap space
2018-05-16 10:29:19,377 INFO [main] mapreduce.Job: Task Id : attempt_1526434993990_0002_m_000001_0, Status : FAILED
Error: Java heap space
2018-05-16 10:29:25,432 INFO [main] mapreduce.Job: map 50% reduce 0%
2018-05-16 10:29:26,438 INFO [main] mapreduce.Job: map 100% reduce 0%
2018-05-16 10:29:26,450 INFO [main] mapreduce.Job: Job job_1526434993990_0002 completed successfully
2018-05-16 10:29:26,554 INFO [main] mapreduce.Job: Counters: 38
File System Counters
FILE: Number of bytes read=9985
FILE: Number of bytes written=281240
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=408
HDFS: Number of bytes written=9985
HDFS: Number of read operations=8
HDFS: Number of large read operations=0
HDFS: Number of write operations=8
Job Counters
Failed map tasks=2
Launched map tasks=4
Other local map tasks=4
Total time spent by all maps in occupied slots (ms)=17871
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=17871
Total vcore-seconds taken by all map tasks=17871
Total megabyte-seconds taken by all map tasks=18299904
Map-Reduce Framework
Map input records=2
Map output records=0
Input split bytes=408
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=235
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=257949696
org.apache.hadoop.hbase.snapshot.ExportSnapshot$Counter
BYTES_COPIED=9985
BYTES_EXPECTED=9985
BYTES_SKIPPED=0
COPY_FAILED=0
FILES_COPIED=2
FILES_SKIPPED=0
MISSING_FILES=0
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=0
2018-05-16 10:29:26,556 INFO [main] snapshot.ExportSnapshot: Finalize the Snapshot Export
2018-05-16 10:29:26,563 INFO [main] snapshot.ExportSnapshot: Verify snapshot integrity
2018-05-16 10:29:26,647 INFO [main] snapshot.ExportSnapshot: Export Completed: emp_snapshot

检验并查看hdfs文件:

localhost:hbase_data a6$ hadoop dfs -ls /hbase/

DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

18/05/16 10:29:34 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 2 items
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot
drwxr-xr-x - a6 supergroup 0 2018-05-15 17:31 /hbase/emp_bak
localhost:hbase_data a6$ hadoop dfs -ls /hbase/bak_emp_snapshot
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

18/05/16 10:29:45 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 2 items
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive
localhost:hbase_data a6$

查看生成快照文件的目录结构及其文件大小
localhost:hbase_data a6$ hadoop dfs -ls -R  /hbase/bak_emp_snapshot

DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

18/05/16 10:34:15 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot/.tmp
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot/emp_snapshot
-rw-r--r-- 1 a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot/emp_snapshot/.inprogress
-rw-r--r-- 1 a6 supergroup 30 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot/emp_snapshot/.snapshotinfo
-rw-r--r-- 1 a6 supergroup 703 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot/emp_snapshot/data.manifest
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/personal data
-rw-rw-rw- 1 a6 staff 4976 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/personal data/9111be6b05e746ddb8507e8daf5a4eb0
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/professional data
-rw-rw-rw- 1 a6 staff 5009 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/professional data/c264d32ef37b4b6f9953b388f007d059
localhost:hbase_data a6$
参考网址: https://blog.csdn.net/yangbutao/article/details/12911487

3)基于快照,clone一个新表

hbase(main):011:0> clone_snapshot ‘emp_snapshot‘,‘new_emp‘

0 row(s) in 0.5290 seconds

hbase(main):013:0> scan ‘new_emp‘
ROW COLUMN+CELL
1 column=personal data:city, timestamp=1526269334560, value=hyderabad
1 column=personal data:name, timestamp=1526269326929, value=raju
1 column=professional data:designation, timestamp=1526269345044, value=manager
1 column=professional data:salary, timestamp=1526269352605, value=50000
1 row(s) in 0.1050 seconds

hbase(main):014:0> desc ‘new_emp‘
Table new_emp is ENABLED
new_emp
COLUMN FAMILIES DESCRIPTION
{NAME => ‘personal data‘, BLOOMFILTER => ‘ROW‘, VERSIONS => ‘1‘, IN_MEMORY => ‘false‘, KEEP_DELETED_CELLS => ‘FALSE‘, DATA_BLOCK_ENCODING => ‘NONE‘, TTL => ‘FOREVER‘, COMPRESSION => ‘NONE‘, MIN_VERSIONS => ‘0‘, BLOCKCACHE => ‘true‘, BLOCKSIZE => ‘65536‘, REPLICATION_SCOPE
=> ‘0‘}
{NAME => ‘professional data‘, BLOOMFILTER => ‘ROW‘, VERSIONS => ‘1‘, IN_MEMORY => ‘false‘, KEEP_DELETED_CELLS => ‘FALSE‘, DATA_BLOCK_ENCODING => ‘NONE‘, TTL => ‘FOREVER‘, COMPRESSION => ‘NONE‘, MIN_VERSIONS => ‘0‘, BLOCKCACHE => ‘true‘, BLOCKSIZE => ‘65536‘, REPLICATION_S
COPE => ‘0‘}
2 row(s) in 0.0370 seconds

4)基于快照恢复表(原hbase表emp需要删除)

hbase(main):027:0>gt; list

TABLE
new_emp
t1
test
3 row(s) in 0.0130 seconds

=> ["new_emp", "t1", "test"]
hbase(main):028:0> list_snapshots
SNAPSHOT TABLE + CREATION TIME
emp_snapshot emp (Wed May 16 09:45:25 +0800 2018)
1 row(s) in 0.0130 seconds

=> ["emp_snapshot"]
hbase(main):029:0> restore_snapshot ‘emp_snapshot‘
0 row(s) in 0.3700 seconds

hbase(main):030:0> list
TABLE
emp
new_emp
t1
test
4 row(s) in 0.0240 seconds

=> ["emp", "new_emp", "t1", "test"]

5)基于快照将数据导出到另外一个集群中的本地文件中

利用mapreduce job将emp_snapshot这个snapshot 导出到本地目录/Users/a6/Applications/experiment_data/hbase_data中的bak_emp_snapshot(不存在)

localhost:bin a6$ hbase org.apache.hadoop.hbase.snapshot.ExportSnapshot -snapshot ‘emp_snapshot‘ -copy-to file:///Users/a6/Applications/experiment_data/hbase_data/bak_emp_snapshot -mappers 16

SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
2018-05-16 10:21:47,310 WARN [main] util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2018-05-16 10:21:47,633 INFO [main] snapshot.ExportSnapshot: Copy Snapshot Manifest
2018-05-16 10:21:47,922 INFO [main] client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
2018-05-16 10:21:50,233 INFO [main] snapshot.ExportSnapshot: Loading Snapshot ‘emp_snapshot‘ hfile list
2018-05-16 10:21:50,547 INFO [main] mapreduce.JobSubmitter: number of splits:2
2018-05-16 10:21:50,732 INFO [main] mapreduce.JobSubmitter: Submitting tokens for job: job_1526434993990_0001
2018-05-16 10:21:51,182 INFO [main] impl.YarnClientImpl: Submitted application application_1526434993990_0001
2018-05-16 10:21:51,268 INFO [main] mapreduce.Job: The url to track the job: http://localhost:8088/proxy/application_1526434993990_0001/
2018-05-16 10:21:51,269 INFO [main] mapreduce.Job: Running job: job_1526434993990_0001
2018-05-16 10:22:02,425 INFO [main] mapreduce.Job: Job job_1526434993990_0001 running in uber mode : false
2018-05-16 10:22:02,427 INFO [main] mapreduce.Job: map 0% reduce 0%
2018-05-16 10:22:09,722 INFO [main] mapreduce.Job: map 50% reduce 0%
2018-05-16 10:22:10,731 INFO [main] mapreduce.Job: map 100% reduce 0%
2018-05-16 10:22:10,740 INFO [main] mapreduce.Job: Job job_1526434993990_0001 completed successfully
2018-05-16 10:22:10,848 INFO [main] mapreduce.Job: Counters: 37
File System Counters
FILE: Number of bytes read=9985
FILE: Number of bytes written=291407
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=408
HDFS: Number of bytes written=0
HDFS: Number of read operations=2
HDFS: Number of large read operations=0
HDFS: Number of write operations=0
Job Counters
Launched map tasks=2
Other local map tasks=2
Total time spent by all maps in occupied slots (ms)=9683
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=9683
Total vcore-seconds taken by all map tasks=9683
Total megabyte-seconds taken by all map tasks=9915392
Map-Reduce Framework
Map input records=2
Map output records=0
Input split bytes=408
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=155
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=212860928
org.apache.hadoop.hbase.snapshot.ExportSnapshot$Counter
BYTES_COPIED=9985
BYTES_EXPECTED=9985
BYTES_SKIPPED=0
COPY_FAILED=0
FILES_COPIED=2
FILES_SKIPPED=0
MISSING_FILES=0
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=0
2018-05-16 10:22:10,851 INFO [main] snapshot.ExportSnapshot: Finalize the Snapshot Export
2018-05-16 10:22:10,852 INFO [main] snapshot.ExportSnapshot: Verify snapshot integrity
2018-05-16 10:22:10,875 INFO [main] snapshot.ExportSnapshot: Export Completed: emp_snapshot

查看快照备份到本地的备份文件结构:

localhost:hbase_data a6$ ls  -R

bak_emp_snapshot

./bak_emp_snapshot:
archive

./bak_emp_snapshot/archive:
data

./bak_emp_snapshot/archive/data:
default

./bak_emp_snapshot/archive/data/default:
emp

./bak_emp_snapshot/archive/data/default/emp:
f8d3b4ead1603d0e9350dc426fce7fd7

./bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7:
personal data professional data

./bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/personal data:
9111be6b05e746ddb8507e8daf5a4eb0

./bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/professional data:
c264d32ef37b4b6f9953b388f007d059
localhost:hbase_data a6$

6)基于快照将数据导出到另外一个集群中的hdfs上

localhost:bin a6$ hbase org.apache.hadoop.hbase.snapshot.ExportSnapshot -snapshot ‘emp_snapshot‘ -copy-to hdfs:///hbase/bak_emp_snapshot -mappers 16

SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
2018-05-16 10:29:02,343 WARN [main] util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2018-05-16 10:29:03,034 INFO [main] snapshot.ExportSnapshot: Copy Snapshot Manifest
2018-05-16 10:29:03,423 INFO [main] client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
2018-05-16 10:29:04,368 INFO [main] snapshot.ExportSnapshot: Loading Snapshot ‘emp_snapshot‘ hfile list
2018-05-16 10:29:04,730 INFO [main] mapreduce.JobSubmitter: number of splits:2
2018-05-16 10:29:04,863 INFO [main] mapreduce.JobSubmitter: Submitting tokens for job: job_1526434993990_0002
2018-05-16 10:29:05,129 INFO [main] impl.YarnClientImpl: Submitted application application_1526434993990_0002
2018-05-16 10:29:05,160 INFO [main] mapreduce.Job: The url to track the job: http://localhost:8088/proxy/application_1526434993990_0002/
2018-05-16 10:29:05,160 INFO [main] mapreduce.Job: Running job: job_1526434993990_0002
2018-05-16 10:29:13,260 INFO [main] mapreduce.Job: Job job_1526434993990_0002 running in uber mode : false
2018-05-16 10:29:13,262 INFO [main] mapreduce.Job: map 0% reduce 0%
2018-05-16 10:29:18,354 INFO [main] mapreduce.Job: Task Id : attempt_1526434993990_0002_m_000000_0, Status : FAILED
Error: Java heap space
2018-05-16 10:29:19,377 INFO [main] mapreduce.Job: Task Id : attempt_1526434993990_0002_m_000001_0, Status : FAILED
Error: Java heap space
2018-05-16 10:29:25,432 INFO [main] mapreduce.Job: map 50% reduce 0%
2018-05-16 10:29:26,438 INFO [main] mapreduce.Job: map 100% reduce 0%
2018-05-16 10:29:26,450 INFO [main] mapreduce.Job: Job job_1526434993990_0002 completed successfully
2018-05-16 10:29:26,554 INFO [main] mapreduce.Job: Counters: 38
File System Counters
FILE: Number of bytes read=9985
FILE: Number of bytes written=281240
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=408
HDFS: Number of bytes written=9985
HDFS: Number of read operations=8
HDFS: Number of large read operations=0
HDFS: Number of write operations=8
Job Counters
Failed map tasks=2
Launched map tasks=4
Other local map tasks=4
Total time spent by all maps in occupied slots (ms)=17871
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=17871
Total vcore-seconds taken by all map tasks=17871
Total megabyte-seconds taken by all map tasks=18299904
Map-Reduce Framework
Map input records=2
Map output records=0
Input split bytes=408
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=235
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=257949696
org.apache.hadoop.hbase.snapshot.ExportSnapshot$Counter
BYTES_COPIED=9985
BYTES_EXPECTED=9985
BYTES_SKIPPED=0
COPY_FAILED=0
FILES_COPIED=2
FILES_SKIPPED=0
MISSING_FILES=0
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=0
2018-05-16 10:29:26,556 INFO [main] snapshot.ExportSnapshot: Finalize the Snapshot Export
2018-05-16 10:29:26,563 INFO [main] snapshot.ExportSnapshot: Verify snapshot integrity
2018-05-16 10:29:26,647 INFO [main] snapshot.ExportSnapshot: Export Completed: emp_snapshot

检验并查看hdfs文件:

localhost:hbase_data a6$ hadoop dfs -ls /hbase/

DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

18/05/16 10:29:34 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 2 items
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot
drwxr-xr-x - a6 supergroup 0 2018-05-15 17:31 /hbase/emp_bak
localhost:hbase_data a6$ hadoop dfs -ls /hbase/bak_emp_snapshot
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

18/05/16 10:29:45 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 2 items
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive
localhost:hbase_data a6$

查看生成快照文件的目录结构及其文件大小
localhost:hbase_data a6$ hadoop dfs -ls -R  /hbase/bak_emp_snapshot

DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

18/05/16 10:34:15 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot/.tmp
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot/emp_snapshot
-rw-r--r-- 1 a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot/emp_snapshot/.inprogress
-rw-r--r-- 1 a6 supergroup 30 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot/emp_snapshot/.snapshotinfo
-rw-r--r-- 1 a6 supergroup 703 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot/emp_snapshot/data.manifest
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/personal data
-rw-rw-rw- 1 a6 staff 4976 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/personal data/9111be6b05e746ddb8507e8daf5a4eb0
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/professional data
-rw-rw-rw- 1 a6 staff 5009 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/professional data/c264d32ef37b4b6f9953b388f007d059
localhost:hbase_data a6$
参考网址: https://blog.csdn.net/yangbutao/article/details/12911487

hbase(main):011:0> clone_snapshot ‘emp_snapshot‘,‘new_emp‘

0 row(s) in 0.5290 seconds

hbase(main):013:0> scan ‘new_emp‘
ROW COLUMN+CELL
1 column=personal data:city, timestamp=1526269334560, value=hyderabad
1 column=personal data:name, timestamp=1526269326929, value=raju
1 column=professional data:designation, timestamp=1526269345044, value=manager
1 column=professional data:salary, timestamp=1526269352605, value=50000
1 row(s) in 0.1050 seconds

hbase(main):014:0> desc ‘new_emp‘
Table new_emp is ENABLED
new_emp
COLUMN FAMILIES DESCRIPTION
{NAME => ‘personal data‘, BLOOMFILTER => ‘ROW‘, VERSIONS => ‘1‘, IN_MEMORY => ‘false‘, KEEP_DELETED_CELLS => ‘FALSE‘, DATA_BLOCK_ENCODING => ‘NONE‘, TTL => ‘FOREVER‘, COMPRESSION => ‘NONE‘, MIN_VERSIONS => ‘0‘, BLOCKCACHE => ‘true‘, BLOCKSIZE => ‘65536‘, REPLICATION_SCOPE
=> ‘0‘}
{NAME => ‘professional data‘, BLOOMFILTER => ‘ROW‘, VERSIONS => ‘1‘, IN_MEMORY => ‘false‘, KEEP_DELETED_CELLS => ‘FALSE‘, DATA_BLOCK_ENCODING => ‘NONE‘, TTL => ‘FOREVER‘, COMPRESSION => ‘NONE‘, MIN_VERSIONS => ‘0‘, BLOCKCACHE => ‘true‘, BLOCKSIZE => ‘65536‘, REPLICATION_S
COPE => ‘0‘}
2 row(s) in 0.0370 seconds

4)基于快照恢复表(原hbase表emp需要删除)

hbase(main):027:0>gt; list

TABLE
new_emp
t1
test
3 row(s) in 0.0130 seconds

=> ["new_emp", "t1", "test"]
hbase(main):028:0> list_snapshots
SNAPSHOT TABLE + CREATION TIME
emp_snapshot emp (Wed May 16 09:45:25 +0800 2018)
1 row(s) in 0.0130 seconds

=> ["emp_snapshot"]
hbase(main):029:0> restore_snapshot ‘emp_snapshot‘
0 row(s) in 0.3700 seconds

hbase(main):030:0> list
TABLE
emp
new_emp
t1
test
4 row(s) in 0.0240 seconds

=> ["emp", "new_emp", "t1", "test"]

5)基于快照将数据导出到另外一个集群中的本地文件中

利用mapreduce job将emp_snapshot这个snapshot 导出到本地目录/Users/a6/Applications/experiment_data/hbase_data中的bak_emp_snapshot(不存在)

localhost:bin a6$ hbase org.apache.hadoop.hbase.snapshot.ExportSnapshot -snapshot ‘emp_snapshot‘ -copy-to file:///Users/a6/Applications/experiment_data/hbase_data/bak_emp_snapshot -mappers 16

SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
2018-05-16 10:21:47,310 WARN [main] util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2018-05-16 10:21:47,633 INFO [main] snapshot.ExportSnapshot: Copy Snapshot Manifest
2018-05-16 10:21:47,922 INFO [main] client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
2018-05-16 10:21:50,233 INFO [main] snapshot.ExportSnapshot: Loading Snapshot ‘emp_snapshot‘ hfile list
2018-05-16 10:21:50,547 INFO [main] mapreduce.JobSubmitter: number of splits:2
2018-05-16 10:21:50,732 INFO [main] mapreduce.JobSubmitter: Submitting tokens for job: job_1526434993990_0001
2018-05-16 10:21:51,182 INFO [main] impl.YarnClientImpl: Submitted application application_1526434993990_0001
2018-05-16 10:21:51,268 INFO [main] mapreduce.Job: The url to track the job: http://localhost:8088/proxy/application_1526434993990_0001/
2018-05-16 10:21:51,269 INFO [main] mapreduce.Job: Running job: job_1526434993990_0001
2018-05-16 10:22:02,425 INFO [main] mapreduce.Job: Job job_1526434993990_0001 running in uber mode : false
2018-05-16 10:22:02,427 INFO [main] mapreduce.Job: map 0% reduce 0%
2018-05-16 10:22:09,722 INFO [main] mapreduce.Job: map 50% reduce 0%
2018-05-16 10:22:10,731 INFO [main] mapreduce.Job: map 100% reduce 0%
2018-05-16 10:22:10,740 INFO [main] mapreduce.Job: Job job_1526434993990_0001 completed successfully
2018-05-16 10:22:10,848 INFO [main] mapreduce.Job: Counters: 37
File System Counters
FILE: Number of bytes read=9985
FILE: Number of bytes written=291407
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=408
HDFS: Number of bytes written=0
HDFS: Number of read operations=2
HDFS: Number of large read operations=0
HDFS: Number of write operations=0
Job Counters
Launched map tasks=2
Other local map tasks=2
Total time spent by all maps in occupied slots (ms)=9683
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=9683
Total vcore-seconds taken by all map tasks=9683
Total megabyte-seconds taken by all map tasks=9915392
Map-Reduce Framework
Map input records=2
Map output records=0
Input split bytes=408
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=155
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=212860928
org.apache.hadoop.hbase.snapshot.ExportSnapshot$Counter
BYTES_COPIED=9985
BYTES_EXPECTED=9985
BYTES_SKIPPED=0
COPY_FAILED=0
FILES_COPIED=2
FILES_SKIPPED=0
MISSING_FILES=0
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=0
2018-05-16 10:22:10,851 INFO [main] snapshot.ExportSnapshot: Finalize the Snapshot Export
2018-05-16 10:22:10,852 INFO [main] snapshot.ExportSnapshot: Verify snapshot integrity
2018-05-16 10:22:10,875 INFO [main] snapshot.ExportSnapshot: Export Completed: emp_snapshot

查看快照备份到本地的备份文件结构:

localhost:hbase_data a6$ ls  -R

bak_emp_snapshot

./bak_emp_snapshot:
archive

./bak_emp_snapshot/archive:
data

./bak_emp_snapshot/archive/data:
default

./bak_emp_snapshot/archive/data/default:
emp

./bak_emp_snapshot/archive/data/default/emp:
f8d3b4ead1603d0e9350dc426fce7fd7

./bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7:
personal data professional data

./bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/personal data:
9111be6b05e746ddb8507e8daf5a4eb0

./bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/professional data:
c264d32ef37b4b6f9953b388f007d059
localhost:hbase_data a6$

6)基于快照将数据导出到另外一个集群中的hdfs上

localhost:bin a6$ hbase org.apache.hadoop.hbase.snapshot.ExportSnapshot -snapshot ‘emp_snapshot‘ -copy-to hdfs:///hbase/bak_emp_snapshot -mappers 16

SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
2018-05-16 10:29:02,343 WARN [main] util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2018-05-16 10:29:03,034 INFO [main] snapshot.ExportSnapshot: Copy Snapshot Manifest
2018-05-16 10:29:03,423 INFO [main] client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
2018-05-16 10:29:04,368 INFO [main] snapshot.ExportSnapshot: Loading Snapshot ‘emp_snapshot‘ hfile list
2018-05-16 10:29:04,730 INFO [main] mapreduce.JobSubmitter: number of splits:2
2018-05-16 10:29:04,863 INFO [main] mapreduce.JobSubmitter: Submitting tokens for job: job_1526434993990_0002
2018-05-16 10:29:05,129 INFO [main] impl.YarnClientImpl: Submitted application application_1526434993990_0002
2018-05-16 10:29:05,160 INFO [main] mapreduce.Job: The url to track the job: http://localhost:8088/proxy/application_1526434993990_0002/
2018-05-16 10:29:05,160 INFO [main] mapreduce.Job: Running job: job_1526434993990_0002
2018-05-16 10:29:13,260 INFO [main] mapreduce.Job: Job job_1526434993990_0002 running in uber mode : false
2018-05-16 10:29:13,262 INFO [main] mapreduce.Job: map 0% reduce 0%
2018-05-16 10:29:18,354 INFO [main] mapreduce.Job: Task Id : attempt_1526434993990_0002_m_000000_0, Status : FAILED
Error: Java heap space
2018-05-16 10:29:19,377 INFO [main] mapreduce.Job: Task Id : attempt_1526434993990_0002_m_000001_0, Status : FAILED
Error: Java heap space
2018-05-16 10:29:25,432 INFO [main] mapreduce.Job: map 50% reduce 0%
2018-05-16 10:29:26,438 INFO [main] mapreduce.Job: map 100% reduce 0%
2018-05-16 10:29:26,450 INFO [main] mapreduce.Job: Job job_1526434993990_0002 completed successfully
2018-05-16 10:29:26,554 INFO [main] mapreduce.Job: Counters: 38
File System Counters
FILE: Number of bytes read=9985
FILE: Number of bytes written=281240
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=408
HDFS: Number of bytes written=9985
HDFS: Number of read operations=8
HDFS: Number of large read operations=0
HDFS: Number of write operations=8
Job Counters
Failed map tasks=2
Launched map tasks=4
Other local map tasks=4
Total time spent by all maps in occupied slots (ms)=17871
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=17871
Total vcore-seconds taken by all map tasks=17871
Total megabyte-seconds taken by all map tasks=18299904
Map-Reduce Framework
Map input records=2
Map output records=0
Input split bytes=408
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=235
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=257949696
org.apache.hadoop.hbase.snapshot.ExportSnapshot$Counter
BYTES_COPIED=9985
BYTES_EXPECTED=9985
BYTES_SKIPPED=0
COPY_FAILED=0
FILES_COPIED=2
FILES_SKIPPED=0
MISSING_FILES=0
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=0
2018-05-16 10:29:26,556 INFO [main] snapshot.ExportSnapshot: Finalize the Snapshot Export
2018-05-16 10:29:26,563 INFO [main] snapshot.ExportSnapshot: Verify snapshot integrity
2018-05-16 10:29:26,647 INFO [main] snapshot.ExportSnapshot: Export Completed: emp_snapshot

检验并查看hdfs文件:

localhost:hbase_data a6$ hadoop dfs -ls /hbase/

DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

18/05/16 10:29:34 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 2 items
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot
drwxr-xr-x - a6 supergroup 0 2018-05-15 17:31 /hbase/emp_bak
localhost:hbase_data a6$ hadoop dfs -ls /hbase/bak_emp_snapshot
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

18/05/16 10:29:45 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 2 items
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot
drwxr-xr-x - a6 supergroup 0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive
localhost:hbase_data a6$

查看生成快照文件的目录结构及其文件大小

参考网址: https://blog.csdn.net/yangbutao/article/details/12911487

WordPress database error: [Table 'yf99682.wp_s6mz6tyggq_comments' doesn't exist]
SELECT SQL_CALC_FOUND_ROWS wp_s6mz6tyggq_comments.comment_ID FROM wp_s6mz6tyggq_comments WHERE ( comment_approved = '1' ) AND comment_post_ID = 4396 ORDER BY wp_s6mz6tyggq_comments.comment_date_gmt ASC, wp_s6mz6tyggq_comments.comment_ID ASC

Leave a Comment

Your email address will not be published.