hash_ring
#- *- coding: utf-8 -*-
"""
hash_ring
~~~~~~~~~~~~~
Implements consistent hashing that can be used when
the number of server nodes can increase or decrease (like in memcached) .
Consistent hashing is a scheme that provides a hash table functionality
in a way that the adding or removing of one slot
does not significantly change the mapping of keys to slots.
More information about consistent hashing can be read in these articles:
"Web Caching with Consistent Hashing":
http://www8.org/w8- papers/2a-webserver/caching/paper2.html
"Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the World Wide Web (1997)":
http://citeseerx.ist.psu.edu/legacymapper?did=38148
Example of usage::
memcache_servers = ['192.168.0.246: 11212',
'192.168.0.247:11212',
'192.168.0.249:11212']
ring = HashRing(memcache_servers)
server = ring.get_node ('my_key')
:copyright: 2008 by Amir Salihefendic.
:license: BSD
"" "
import math
< span style="color: #0000ff">import sys
from bisect import bisect
if sys.version_info >= (2, 5):
import hashlib
md5_constructor = hashlib.md5
else:
import md5
md5_constructor = md5.new
class HashRing(object):
def span> __init__(self, nodes=None, weights=None):
< span style="color: #800000">"""`nodes` is a list of objects that have a proper __str__ representation.
`weights` is dictionary that sets weights to the nodes. The default
weight is that all nodes are equal.
"""< span style="color: #0000 00">
self.ring = dict()
self._sorted_keys = []
self.nodes = nodes
if not weights:
weights =< span style="color: #000000"> {}
self.weights = weights
self._generate_circle()< br />
def _generate_circle(self):
"""Generates the circle.
"""
total_weight = 0
for node in self.nodes:
total_weight += self.weights.get(node, 1)
for node in self.nodes:
weight = 1
if node in self.weights:
weight = self.weights.get(node)
factor = math.floor((40*len(self.nodes)*weight) / total_weight);
for j in range(0, int(factor)):
b_key = self._hash_digest( '%s-%s ' % (node, j) )
for i in range(0, 3) :
key = self._hash_val(b_key, lambda x: x+i*4)
self.ring[key] = node
self._sorted_keys.append(key)
self ._sorted_keys.sort()
def get_node(self, string_key ):
"""Given a string key a corresponding node in the hash ring is returned.
If the hash ring is empty, `None` is returned.
"""
pos = self.get_node_pos(string_key)
if pos is None:
return None
return self.ring[ self._sorted_keys[pos] ]
def get_node_pos(self, string_key):
"""Given a string key a corresponding node in the hash ring is returned
along with it's position in the ring.
If the hash ring is empty, (`None`, `None`) is returned.
"""
if not self.ring:
return None
key = self.gen_key(string_key)
nodes = self._sorted_keys
pos = bisect(nodes, key)
if pos == len(nodes):
return 0
else< span style="color: #000000">:
return pos
def iterate_nodes(self, string_key, distinct=True):
"""Given a string key it returns the nodes as a generator that can hold the key.
The generator iterates one time through the ring
starting at the correct position.
if `distinct` is set, then the nodes returned will be unique,
ie no virtual copies will be returned.
"""
if not< span style="color: #000000"> self.ring:
yield None , None
returned_values = set()
def distinct_filter(value):
if str(value) not in returned_values:
returned_values.add(str(value))
return value
pos = self.get_node_pos(string_key)
< span style="color: #0000ff">for key in self._sorted_keys[pos:] :
val = distinct_filter(self.ring[key])
if val:
yield val
for i, key in enumerate(self._sorted_keys):
if i < pos:
val = distinct_filter(self.ring[key])
if val:
yield val
def gen_key(self , key):
"""Given a string key it returns a long value ,
this long value represents a place on the hash ring.
md5 is currently used because it mixes well.
"""
b_key = self._hash_digest(key)
return self._hash_val(b_key, lambda x: x)
def _hash_val(self , b_key, entry_fn):
return (( b_key[entry_fn(3)] << 24)
|(b_key[entry_fn(2)] << 16)
|(b_key[entry_fn( 1)] << 8)
| b_key[entry_fn(0)] )
def _hash_digest(self, key):
m = md5_constructor()
m.update(bytes(key,encoding=' utf-8'))
#return map(ord, m.di gest())
return list(m.digest())
'''
memcache_servers = [' 192.168.0.246:11212',
'192.168.0.247:11212',
'192.168.0.249:11212']
ring = HashRing(memcache_servers)
server = ring.get_node('my_key')
'''
# Increase weight
memcache_servers = ['192.168.0.246:11212' ,
'192.168.0.247:11212',
'192.168.0.249:11212']
weights = {
'192.168.0.246:11212' span>: 1,
'192.168.0.247:11212': 2,
'192.168.0.249:11212' : 1
}
ring = HashRing(memcache_servers, weights)< br />server = ring.get_node('my_key')
print (server)
When adding and deleting the machine, there may be data not found
# -*- coding: utf-8 -*-
"""< br /> hash_ring
~~~~~~~~~~~~~~
Implements consistent hashing that can be used when
the number of server nodes can increase or decrease (like in memcached).
Consistent hashing is a scheme that provides a hash table functionality
in a way that the adding or removing of one slot
does not significantly change the mapping of keys to slots.
More information about consistent hashing can be read in these articles:
"Web Caching with Consistent Hashing":
ht tp://www8.org/w8-papers/2a-webserver/caching/paper2.html
"Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the World Wide Web (1997)":
http://citeseerx.ist.psu.edu/legacymapper?did=38148
Example of usage::
< br /> memcache_servers = ['192.168.0.246:11212',
'192.168.0.247:11212',
'192.168.0.249:11212']
ring = HashRing( memcache_servers)
server = ring.get_node('my_key')
:copyright: 2008 by Amir Salihefendic.
:license: BSD
"""
import math
import sys
from bisect import bisect
if sys.version_info >= (2, 5 ):
import hashlib< br /> md5_constructor = hashlib.md5
else:
import md5
md5_constructor = md5.new
class HashRing(object):
def __init__(self, nodes=None, weights=None):
" ""`nodes` is a list of objects that have a proper __str__ representat ion.
`weights` is dictionary that sets weights to the nodes. The default
weight is that all nodes are equal.
"""
self.ring = dict()
self ._sorted_keys = []
self.nodes = nodes
if not weights:
weights = {}
self.weights = weights
self._generate_circle()
def _generate_circle(self):
"""Generates the circle.
"""
total_weight = 0
for node in self.nodes:
total_weight += self.weights.get(node, 1)
for node in self .nodes:
weight = 1
if node in self.weights:
weight = self.weights.get(node)< br />
factor = math.floor((40*len(self.nodes)*weight) / total_weight);
for j in range(0, int(factor)):
b_key = self. _hash_digest( '%s-%s' % (node, j) )
for i in range(0, 3):
key = self._hash_val(b_key , lambda x: x+i*4)
self.ring[key] = node
self._sorted_keys.append(key)
self._sorted_keys.sort()
span>def get_node(self, string_key):
"""Give na string key a corresponding node in the hash ring is returned.
If the hash ring is empty, `None` is returned.
"""
pos = self.get_node_pos(string_key)
if pos is None:
return None
return self.ring[ self._sorted_keys[pos] ]
def get_node_pos(self, string_key):
" ""Given a string key a corresponding node in the hash ring is returned
along with it's position in the rin g.
If the hash ring is empty, (`None`, `None`) is returned.
"" "
if not self.ring:
return None
key = self.gen_key(string_key)
nodes = self. _sorted_keys
pos = bisect(nodes, key)
if pos == len(nodes):
return< span style="color: #000000"> 0
else:
return pos
def iterate_nodes(self, string_key, distinct=True):
"""Given a string key it returns the nodes as a generator that can hold the key.
The generator iterates one time through the ring
starting at the correct position.
if `distinct` is set, then the nodes returned will be unique,
ie no virtual copies will be returned.
"""
if not self.ring:
yield None, None
returned_values =< span style="color: #000000"> set()
def< /span> distinct_filter(value):
if str(value) not in returned_values:
returned_values.add( str(value))
return value
pos = self.get_node_pos(string_key)
for key in self._sorted_keys[pos:]:
val = distinct_filter(self.ring[key])
if val:< br /> yield val
for i, key in enumerate(self._sorted_keys):
if i < pos:
val = distinct_filter(self.ring[key])
if val:
yield val
span>def gen_key(self, key):
"""Given a string key it returns a long value,
this long value represents a place on the hash ring.
md5 is currently used because it mixes well.
"""
b_key = self._hash_digest(key)
return self._hash_val (b_key, lambda x: x)
def _hash_val(self, b_key, entry_fn):
return (( b_key[entry_fn(3)] << 24)
|(b_key[entry_fn(2)] << 16 )
|(b_key[entry_fn(1)] << 8)
span>| b_key[entry_fn(0)] )
def _hash_digest(self, key):
m = md5_constructor()
m.update( bytes(key,encoding='utf-8'))< br /> #return map(ord, m.digest())< br /> return list(m.digest())
'''
memcache_servers = ['192.168.0.246:11212',
'192.168.0.247:11212',
'192.168.0.249:11212']
ring = HashRing(memcache_servers)
server = ring.get_node('my_key')
'''
# Increase weight
memcache_servers = ['192.168.0.246:11212',
'192.168.0.247:11212 ',
'192.168.0.249:11212']
weights = {
' 192.168.0.246:11212': 1,
'192.168.0.247:11212': 2,
'192.168.0.249:11212': 1}
ring = HashRing(memcache_servers, weights)
server = ring.get_node(< span style="color: #800000">'my_key')
print(server)