[Data Structure] Delete, Insert, and Finding of Binary Search Tree

The meaning of a binary search tree is that the value of each left child in this binary tree is smaller than its parent node, and the value of each right child is smaller than the parent node An ordered array will appear after traversing the large and middle order

Insert

Insert a node every time it is inserted in a leaf node

It is relatively simple to implement

Recursive and non-recursive are implemented

bool _InsertR(Node* root,const K& key) {//Initialize the insertion node Node* node=new Node(key); node->_key=key; node->_left=node- >_right=node->_parent=NULL; //When the tree is empty, directly serve as the root node if((root)==NULL) {root=node; return true;} //Insert into the current node (*root) If((root)->_left == NULL && (root)->_key> key){ node->_parent=root; root->_left=node; return true;} //Insert into the current node (*Root) right child if((root)->_right == NULL && (root)->_key _parent=root; (root)->_right=node; return true;} if (root->_key> key) _InsertR(r oot->_left,key); else if(root->_key _right,key); else return true;
}bool _Insert2(Node*& root,const K& key) {if(root==NULL) {root=new Node(key); return true;} if(root->_key< key) return _Insert2(root->_right,key); else if(root->_key>key) return _Insert2(root->_left,key); else return false; }

Find

 bool FindR(const K& key) {if(_root==NULL) return false; Node * cur=_root; while(cur) {if(cur->_key_right; else if(cur->_key>key) cur=cur->_left; else return true;} }< /pre> 
It is difficult to delete a node. There are four cases

1. The deleted node has no left child

2. The deleted node has no right child

p>

3. The deleted node has no left or right children

4. The deleted node has both right and left children

Recursive implementation

bool _Remove(Node*& root,const K& key) {if (root==NULL) {return false;} if(root->_key_right,key);} else if(root->_key>key) {return _Remove(root->_left,key);} else {Node* del=root; if(root->_left==NULL) { root=root->_right;} else if(root->_right==NULL) {root=root->_left;} delete del;} return true; }

Non-recursive implementation

bool Remove(const K& key)//Non-recursive {if(_root==NULL) return false; Node* pre=NULL; Node* cur=_root; Node* del=cur; while (cur&&cur->_key!=key) {if(cur->_key>key) {pre=cur; cur=cur-> _left;} else if (cur->_key_right;}} if(cur->_left==NULL) {if(cur==_root) _root=cur-> _right; else if(cur==pre->_left) {pre->_left=cur->_right;} else {pre->_right=cur->_right; } del=cur;} else if (cur->_right==NULL) {if(cur==_root) {_root=cur->_left;} else if (pre->_left==cur) {pre->_left ==cur->_left;} else {pre->_right=cur->_left;} del=cur;} else {Node* minRight=cur->_right;//The leftmost node of the right child pre=cur; while ( minRight->_left) {pre=minRight; minRight=minRight->_left;} del=minRight; cur->_key=minRight->_key;//Exchange node value if(pre->_left==minRight) {pre- >_left=minRight->_right;} else {pre->_right=minRight->_right;}} delete del; return true; }

Source code

< /p>

#includeusing namespace std;templatestruct SearchBinaryTreeNode{ SearchBinaryTreeNode* _left; SearchBinaryTreeNode* _right; SearchBinaryTreeNode* _parent; K _key; SearchBinaryTreeNode(const K& key) :_key(key) ,_left(NULL) ,_right(NULL) ,_parent(NULL) {));templateclass Sea rchBinaryTree{ typedef SearchBinaryTreeNode Node;public: SearchBinaryTree() :_root(NULL) {} SearchBinaryTree(const SearchBinaryTree& t) {_root=t->_root;} ~SearchBinaryTree() {delete _root;} bool InsertR(const K& key) // Insert node {if (!_root) // Empty tree {_root = new Node(key); _root->_key = key;} else {_InsertR(_root, key);} return true; } bool Insert2(const K& key)//recursive {_Insert2(_root,key); return true;} bool Remove2(const K& key)//recursive {_Remove(_root,key); return true;} bool Remove(const K& key)//Non-recursive {if(_root==NULL) return false; Node* pre=NULL; Node* cur=_root; Node* del=cur; while (cur&&cur->_key!=key) {if(cur- >_key>key) {pre=cur; cur=cur->_left;} else if (cur->_key_right;}} if(cur->_left== NULL) {if(cur==_root) _root=cur->_right; else if(cur==pre->_left) {pre->_left=cur->_right;} else {pre->_right=cur-> _right;} del=cur;} else if (cur->_right==NULL) {if (cur==_root) {_root=cur->_left;} else if (pre->_left==cur) {pre->_left==cur->_left;} else {pre->_right=cur->_left ;} del=cur;} else {Node* minRight=cur->_right;//The leftmost node of the right child pre=cur; while (minRight->_left) {pre=minRight; minRight=minRight->_left;} del =minRight; cur->_key=minRight->_key;//Exchange node value if(pre->_left==minRight) {pre->_left=minRight->_right;} else {pre->_right=minRight-> _right;}} delete del; return true;} bool FindR(const K& key) {if(_root==NULL) return false; Node* cur=_root; while(cur) {if(cur->_key_right; else if(cur->_key>key) cur=cur->_left; else return true;}} void InOrder()//Inorder traversal {_InOrder(_root); cout<_key=key; node->_left=node->_right=node-> _parent=NULL; //When the tree is empty, it is directly used as the root node if((root)==NULL) {root=node; return true;} / / Insert the left child of the current node (*root) if((root)->_left == NULL && (root)->_key> key){ node->_parent=root; root->_left=node; return true;} //Insert the right child of the current node (*root) if((root)->_right == NULL && (root)->_key _parent=root; (root)- >_right=node; return true;} if(root->_key> key) _InsertR(root->_left,key); else if(root->_key _right,key); else return true;} bool _Insert2(Node*& root,const K& key) {if(root==NULL) {root=new Node(key); return true;} if(root->_key_right,key); else if(root->_key>key) return _Insert2(root->_left,key); else return false;} void _InOrder(Node* root) {Node* cur=root; if(cur= =NULL) return; _InOrder(cur->_left); cout<_key<<" "; _InOrder(cur->_right);} bool _Remove(Node*& root,const K& key) {if (root ==NULL) {return false;} if(root->_key_right,key);} else if(root->_key>key) {return _Remove(root->_left,key);} else {Node* del=root; if(root->_left==NULL) {root=root->_right;} else if(root->_right==NULL ) {root=root->_left;} delete del;} return true; }private: Node* _root;};void test(){SearchBinaryTree BSTree;//15,6,18,3,7,17 ,20,2,4,13,9BSTree.InsertR(15);BSTree.InsertR(6);BSTree.InsertR(18);BSTree.InsertR(3);BSTree.InsertR(7);BSTree.InsertR(17) ;BSTree.InsertR(20);BSTree.InsertR(2);BSTree.InsertR(4);BSTree.InsertR(13);BSTree.InsertR(9);BSTree.Insert2(10);BSTree.InOrder();BSTree .Remove2(13);BSTree.InOrder();BSTree.Remove(6);BSTree.InOrder();cout<

WordPress database error: [Table 'yf99682.wp_s6mz6tyggq_comments' doesn't exist]
SELECT SQL_CALC_FOUND_ROWS wp_s6mz6tyggq_comments.comment_ID FROM wp_s6mz6tyggq_comments WHERE ( comment_approved = '1' ) AND comment_post_ID = 5020 ORDER BY wp_s6mz6tyggq_comments.comment_date_gmt ASC, wp_s6mz6tyggq_comments.comment_ID ASC

Leave a Comment

Your email address will not be published.