[Data Structure] Finding of Binary Trees and Calculation of Knights

The previous blog has basically introduced the basic algorithm of the binary tree. This article mainly introduces the search of nodes in the binary tree and the number of subtrees in the Kth row.

First, the binary tree search< /p>

Need to use recursive algorithm

Code to implement internal functions

 Node* _Find(Node* root,const T& x) {if (root==NULL) return NULL; if(root->_date==x) return root; Node * left=_Find(root->left,x); Node* right=_Find(root->right,x); if(left) {return _Find(root->left,x);} if(right) {return _Find(root->right,x);} }

External call function

 Node* Find(const T& x) {return _Find(_root,x); }

The following describes the number of K-th Zeng subtrees

Recursive implementation, as follows

 int _GetKLevel(Node* root,size_t k ) { if(root==NULL) return 0;if(k==1) return 1;else return _GetKLevel(root->left,k-1)+_GetKLevel(root->right,k-1); }
External call function

 size_t GetKLevel(size_t k) {return _GetKLevel (_root,k); }

How to call

void test(){ int a1[10]={1,2,3,'#','#',4,'#','#',5,6}; BinTree t1( a1,10,'#'); BinTreeNode *searchNode = t1.Find(3); if(NULL == searchNode){ cout<<"The node was not found"<_date<< endl; }cout<

WordPress database error: [Table 'yf99682.wp_s6mz6tyggq_comments' doesn't exist]
SELECT SQL_CALC_FOUND_ROWS wp_s6mz6tyggq_comments.comment_ID FROM wp_s6mz6tyggq_comments WHERE ( comment_approved = '1' ) AND comment_post_ID = 5025 ORDER BY wp_s6mz6tyggq_comments.comment_date_gmt ASC, wp_s6mz6tyggq_comments.comment_ID ASC

Leave a Comment

Your email address will not be published.