4. Linear regression

import tensorflow as tf

import numpy as np
import matplotlib.pyplot as plt

x_data = np.random.rand(100)

noise
= np.random.normal(0,0.01,x_data.shape)
y_data
= x_data*0.1 + 0.2 + noise

plt.scatter(x_data, y_data)
plt.show()

Share a picture

# build a linear Model

d = tf.Variable(np.random.rand(1))
k
= tf.Variable(np.random.rand(1))
y
= k*x_data + d

# Quadratic cost function
loss = tf.losses.mean_squared_error(y_data, y)
# Define a gradient descent method optimizer
optimizer = tf.train.GradientDescentOptimizer(0.3)
# Minimize the cost function
train = optimizer.minimize(loss)

# Initialize variables
init= tf.global_variables_initializer()

with tf.Session() as sess:
sess.run(init)
for i in range(201):
sess.run(train)
if i%20==0:
print(i,sess.run([k,d]) )
y_pred
= sess.run(y)
plt.scatter(x_data,y_data)
plt.plot(x_data,y_pred,
'r-',lw=3)
plt.show()

0 [array([0.42558686]), array([0.07772181])]

20 [array([0.24686251]), array([0.1212207])]
40 [array([0.17103131]), array([0.16282419])]
60 [array([0.13410329]), array([0.18308412])]
80 [array([0.1161202]), array([0.19295024])]
100 [array([0.10736286]), array([0.1977548])]
120 [array([0.10309823]), array([0.20009452])]
140 [array([0.10102146]), array([0.2012339])]
160 [array([0.10001012]), array([0.20178875])]
180 [array([0.09951763]), array([0.20205895])]
200 [array([0.09927779]), array([0.20219054])]

Share pictures

import tensorflow as tf

import numpy as np
import matplotlib.pyplot as plt

x_data = np.random. rand(100)

noise
= np.random.normal(0,0.01,x_data.shape)
y_data
= x_data*0.1 + 0.2 + noise

plt.scatter(x_data, y_data)
plt.show()

# Build a linear model

d = tf.Variable(np.random.rand(1))
k
= tf.Variable(np.random.rand(1))
y
= k*x_data + d

# Quadratic cost function
loss = tf.losses.mean_squared_error(y_data, y)
# Define a gradient descent method optimizer
optimizer = tf.train.GradientDescentOptimizer(0.3)
# Minimize the cost function
train = optimizer.minimize(loss)

# Initialize variables
init= tf.global_variables_initializer()

with tf.Session() as sess:
sess.run(init)
for i in range(201):
sess.run(train)
if i%20==0:
print(i,sess.run([k,d]) )
y_pred
= sess.run(y)
plt.scatter(x_data,y_data)
plt.plot(x_data,y_pred,
'r-',lw=3)
plt.show()

WordPress database error: [Table 'yf99682.wp_s6mz6tyggq_comments' doesn't exist]
SELECT SQL_CALC_FOUND_ROWS wp_s6mz6tyggq_comments.comment_ID FROM wp_s6mz6tyggq_comments WHERE ( comment_approved = '1' ) AND comment_post_ID = 5229 ORDER BY wp_s6mz6tyggq_comments.comment_date_gmt ASC, wp_s6mz6tyggq_comments.comment_ID ASC

Leave a Comment

Your email address will not be published.