[Data Structure] Recursive Realization of Binary Tree

The concept of binary tree, I don’t want to talk about it here, but you need to know the basics of full binary tree, complete binary tree, etc.

Concept, enter the topic below.

First create a binary tree, look at the code below:

Node* _Create(T* a, size_t size,size_t& index ,const T& invalid) {assert(a); Node* root = NULL; while (index _left = _Create( A, size, ++ index, invalid; root -> _ right = _create (a, size, ++ index, invalid);} return root;} 

What needs attention here is the assertion on array a. Develop a good habit, just assert the assertion. There is also the index

which must be a reference, because each element is only accessed once, that is, the externally changed index, and the internal Need to change. So

, is to pass by reference.

Destruction of the binary tree:

void _Destroy(Node* root) {if (root == NULL) return; _Destroy( root->_left);		_Destroy(root->_right);	}

递归代码, It looks very simple, but don't forget to destroy, otherwise the memory leaks.

Three kinds of traversal of binary tree----preorder, middle order, postorder

void _PreOrder(Node* root ) {Node* cur = root; if (cur != NULL) {cout << cur->_data<<" "; _PreOrder(cur->_left); _PreOrder(cur->_right);}} void _InOrder(Node * root) {Node* cur = root; if (cur != NULL) {_InOrder(cur->_left); cout << cur->_data<<" "; _InOrder(cur->_right);}} void _PostOrder (Node* root) {Node* cur = root; if (cur != NULL) {_PostOrder(cur->_left); _PostOrder(cur->_right); cout << cur->_data<<" ";}} 

层序遍历:

void _TiertOrder(Node* root) {queue< Node*> q; Node* cur = root; q.push(cur); while (!q.empty()) {Nod e* tmp = q.front(); cout << tmp->_data << ""; if (tmp->_left) {q.push(tmp->_left);} if (tmp->_right) {q .push(tmp->_right);			}			q.pop();		}	}

This process uses queues, so let’s talk about the idea here: if it’s not an empty tree, the root node will join the team, if it’s enqueued

The subtree of the point is not empty, and the subtree is also enqueued, and the root node will pop up after enqueuing, and so on. For example, the left child you are following

The child exists and has joined the team. If the left child has left and right children, the left and right children will also be added to the team. Pop up the left child who started joining the team.

Depth of the binary tree:

size_t _Depth(Node* root) {if (root == NULL) return 0; size_t left = _Depth(root->_left);		size_t right = _Depth(root->_right);		return left > right ? left + 1 : right + 1;	}

The recursive process is time-consuming, so the two variables above are necessary. Never try to keep the code simple

The feeling of the computer is not considered.

Number of nodes in the binary tree:

size_t _Size(Node* root) {if (root == NULL) return 0;		return _Size(root->_left) + _Size(root->_right) + 1;	}

Finding elements in the binary tree

Node* _Find(Node* root, const T& x) {Node* cur = root; if (cur == NULL) return NULL; if (cur->_data == x) return cur; //If the left subtree is not found, the right subtree will be traversed if (!_Find(cur->_left, x)) _Find(cur->_right,x); }

Well, that’s all about the recursive implementation of binary trees--

WordPress database error: [Table 'yf99682.wp_s6mz6tyggq_comments' doesn't exist]
SELECT SQL_CALC_FOUND_ROWS wp_s6mz6tyggq_comments.comment_ID FROM wp_s6mz6tyggq_comments WHERE ( comment_approved = '1' ) AND comment_post_ID = 5029 ORDER BY wp_s6mz6tyggq_comments.comment_date_gmt ASC, wp_s6mz6tyggq_comments.comment_ID ASC

Leave a Comment

Your email address will not be published.